Centric connectivity index by shell matrices

author

Abstract:

Relative centricity RC values of vertices/atoms are calculated within the Distance Detour and Cluj-Distance criteria on their corresponding Shell transforms. The vertex RC distribution in a molecular graph gives atom equivalence classes, useful in interpretation of NMR spectra. Timed by vertex valences, RC provides a new index, called Centric Connectivity CC, which can be useful in the topological characterization of graphs and in QSAR/QSPR studies.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Eccentric Connectivity Index: Extremal Graphs and Values

Eccentric connectivity index has been found to have a low degeneracy and hence a significant potential of predicting biological activity of certain classes of chemical compounds. We present here explicit formulas for eccentric connectivity index of various families of graphs. We also show that the eccentric connectivity index grows at most polynomially with the number of vertices and determine ...

full text

On Second Atom-Bond Connectivity Index

The atom-bond connectivity index of graph is a topological index proposed by Estrada et al. as ABC (G)  uvE (G ) (du dv  2) / dudv , where the summation goes over all edges of G, du and dv are the degrees of the terminal vertices u and v of edge uv. In the present paper, some upper bounds for the second type of atom-bond connectivity index are computed.

full text

Eccentric Connectivity Index of Some Dendrimer Graphs

The eccentricity connectivity index of a molecular graph G is defined as (G) = aV(G) deg(a)ε(a), where ε(a) is defined as the length of a maximal path connecting a to other vertices of G and deg(a) is degree of vertex a. Here, we compute this topological index for some infinite classes of dendrimer graphs.

full text

A Note on Atom Bond Connectivity Index

The atom bond connectivity index of a graph is a new topological index was defined by E. Estrada as ABC(G)  uvE (dG(u) dG(v) 2) / dG(u)dG(v) , where G d ( u ) denotes degree of vertex u. In this paper we present some bounds of this new topological index.

full text

The Connectivity Index ∗

Let G be a simple connected graph of order n. The connectivity index Rα(G) of a graph G is the sum of the weights (d(u)d(v)) of all edges uv of G, where α is a real number (α 6= 0), and d(u) denotes the degree of the vertex u. In this paper, we present some new bounds for the connectivity index of a graph G in terms of the eigenvalues of the Laplacian matrix or adjacency matrix of the graph G, ...

full text

Eccentric Connectivity Index

The eccentric connectivity index ξ is a novel distance–based molecular structure descriptor that was recently used for mathematical modeling of biological activities of diverse nature. It is defined as ξ(G) = ∑ v∈V (G) deg(v) · ε(v) , where deg(v) and ε(v) denote the vertex degree and eccentricity of v , respectively. We survey some mathematical properties of this index and furthermore support ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  35- 43

publication date 2012-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023