Cation Exchange Nanocomposite Membrane Containing Mg(OH)2 Nanoparticles: Characterization and Transport Properties

Authors

  • Farhad Heidary Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
Abstract:

In this study, ion exchange nanocomposite membranes was prepared by addition of Mg(OH)2 nanoparticles to a blend containing sulfonated polyphenylene oxide and sulfonated polyvinylchloride via a simple casting method. Magnesium hydroxide nanoparticles were synthesized via a facile sono-chemical reaction and were selected as filler additive in fabrication of ion exchange nanocomposite membranes. Nanoparticles and nanocomposites were then characterized using scanning electron microscopy, Fourier transform infrared spectroscopy and X-ray diffraction. The effect of nanoparticles loading on physicochemical and electrochemical properties of prepared cation exchange nanocomposite membranes was studied. The membranes performance was evaluated by membrane potential, transport number, permselectivity, ionic permeability, flux of ions and membrane oxidative stability. Various characterizations revealed that the addition of different amounts of inorganic fillers could affect the membrane performance. The inorganic nanoparticles not only created extra pores and water channels that led to ion conductivity enhancement, but also improved transport number, permselectivity and flux of ions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Synthesis, Characterization and Transport Properties of Novel Ion-exchange Nanocomposite Membrane Containing In-situ Formed ZnO Nanoparticles

A  new  type  of  cation-exchange  nanocomposite  membranes  was prepared  by  in-situ  formation  of  ZnO  nanoparticles  in  a  blend containing  sulfonated  poly  (2,6-dimethyl-1,4-phenylene  oxide)  and sulfonated polyvinylchloride  via  a  simple  one-step  chemical method.  As-synthesized  nanocomposite  membranes were characterized  using  Fourier  transform  infrared  spectroscopy, scan...

full text

synthesis, characterization and transport properties of novel ion-exchange nanocomposite membrane containing in-situ formed zno nanoparticles

a  new  type  of  cation-exchange  nanocomposite  membranes  was prepared  by  in-situ  formation  of  zno  nanoparticles  in  a  blend containing  sulfonated  poly  (2,6-dimethyl-1,4-phenylene  oxide)  and sulfonated polyvinylchloride  via  a  simple  one-step  chemical method.  as-synthesized  nanocomposite  membranes were characterized  using  fourier  transform  infrared  spectroscopy, scan...

full text

Synthesis, Characterization and Transport Properties of Novel Ion-exchange Nanocomposite Membrane Containing In-situ Formed ZnO Nanoparticles

A new type of cation-exchange nanocomposite membranes was prepared by in-situ formation of ZnO nanoparticles in a blend containing sulfonated poly (2,6-dimethyl-1,4-phenylene oxide) and sulfonated polyvinylchloride via a simple one-step chemical method. As-synthesized nanocomposite membranes were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy and X-ray...

full text

High Performance Nanocomposite Cation Exchange Membrane: Effects of Functionalized Silica-Coated Magnetic Nanoparticles

Nanocomposite cation exchange membranes (CEMs) were prepared by adding various amounts of functionalized silica-coated magnetite nanoparticles to the sulfonated polyethersulfone (sPES) polymeric matrix. The particles were synthesized first by the co-precipitation method (M0). Different surface modifications were then carried out on them by grafting three functional groups of mercaptopropyl, pro...

full text

Study the Transport Properties of Anion and Cation Exchange Membranes toward Various Ions Using Chronopotentiometry

The transport properties of various anion and cation exchange membranes were studied in different electrolyte solutions using chronopotentiometry technique to get insight about the influence of the counter ion on the transport properties of the membranes. The investigated samples include heterogeneous ion exchange membranes varying in the functionality of fixed charged gro...

full text

Synthesis and Characterization of Cation Exchange PVA-g-PAA/PBI sulfone Membrane for the Electrolysis of Sodium Chloride

The reported work is on the preparation and characterization of polyvinyl alcohol -g- Polyacrylic acid (PVA-g-PAA)/ Polybenzimidazole sulfone (PBIs) cation exchange membrane used for the electro dialysis of sodium chloride solution. The polymer syrup has been prepared using the grafting method with the help of polyvinyl alcohol and polyacrylic acid in the presence of water solvent. The polymer ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 2

pages  191- 201

publication date 2018-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023