Cardiovascular responses produced by resistin injected into paraventricular nucleus mediated by the glutamatergic and CRFergic transmissions within rostral ventrolateral medulla

Authors

  • Abolfazl Akbari Department of Physiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran
Abstract:

Objective(s): Resistin, as a 12.5 kDa cysteine-rich polypeptide, is expressed in hypothalamus and regulates sympathetic nerve activity. It is associated with obesity, metabolic syndrome and cardiovascular diseases. In this study, we investigated the neural pathway of cardiovascular responses induced by injection of resistin into paraventricular nucleus (PVN) with rostral ventrolateral medulla (RVLM). Materials and Methods: Adult male rats were anesthetized with urethane (1.4 g/kg intraperitoneally). Resistin (3 µg/1 µl/rat) was first injected into PVN, and the glutamatergic, corticotrophin-releasing factor (CRF)-ergic and angiotensinogenic transmission was inhibited by injecting of their antagonist in RVLM. Arterial pressure (AP) and heart rate (HR) were monitored before and after the injection. Results: The results showed that resistin injection into PVN significantly increased AP and HR compared to control group and prior to its injection (P<0.05). Injection of AP5 ((2R)-amino-5-phosphonovaleric acid; (2R)-amino-5-phosphonopentanoate) (50 nM/rat), losartan (10 nM/rat) and astressin (50 nM/rat) into RVLM reduced cardiovascular responses produced by injected resistin into PVN. Injection of AP5+losartan or astressin+losartan or astressin+AP5 into RVLM could significantly reduce cardiovascular responses produced by resistin compared to before injection (P<0.05). Furthermore, the depressor responses generated by AP5+losartan injected into RVLM were significantly stronger than the depressor responses generated by AP5+astressin and/or astressin+losartan injected into RVLM (P<0.05). Conclusion: It can be concluded that glutamatergic and CRFergic transmissions have crucial contribution to cardiovascular responses produced by resistin. The results provided new and potentially important insight regarding neural transmission when the plasma level of resistin increases; this reveals the role of resistin in cardiovascular responses such as metabolic syndrome and hypertension.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Central administration of resistin into the paraventricular nucleus (PVN) produces significant cardiovascular responses

Introduction: Resistin, a complex multimeric structure which is secreted by adipose tissue and circulates in the blood, acts on the hypothalamus to increase sympathetic nerve activity, inhibit appetite and is associated with obesity, insulin resistance and cardiovascular disorders. In this study, we survey the cardiovascular effects of direct injection of resistin into specific cell group of th...

full text

GABAergic receptors in rostral ventrolateral medulla mediates the cardiovascular responses to activation of bed nucleus of the stria terminalis in the female rat

The bed nucleus of the stria terminalis (BST) is known to contain estrogen (E)- concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of GABA-A antagonist receptors, bicuculline methiodide (BMI), in the rostral ven...

full text

Glutaminergic receptors in rostral ventrolateral medulla mediate the cardiovascular responses to activation of bed nucleus of the stria terminalis in female rats

The bed nucleus of the stria terminalis (BST) has been known to contain estrogen (E)-concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of glutamate antagonist receptors in the rostral ventrolateral medulla (RVL...

full text

Serotonergic projection from nucleus raphe pallidus to rostral ventrolateral medulla modulates cardiovascular reflex responses during acupuncture.

We have demonstrated that stimulation of somatic afferents during electroacupuncture (EA) inhibits sympathoexcitatory cardiovascular rostral ventrolateral medulla (rVLM) neurons and reflex responses. Furthermore, EA at P5-P6 acupoints over the median nerve on the forelimb activate serotonin (5-HT)-containing neurons in the nucleus raphe pallidus (NRP). The present study, therefore, examined the...

full text

GABAergic receptors in rostral ventrolateral medulla mediates the cardiovascular responses to activation of bed nucleus of the stria terminalis in the female rat

The bed nucleus of the stria terminalis (BST) is known to contain estrogen (E)- concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of GABA-A antagonist receptors, bicuculline methiodide (BMI), in the rostral ven...

full text

Glutaminergic receptors in rostral ventrolateral medulla mediate the cardiovascular responses to activation of bed nucleus of the stria terminalis in female rats

The bed nucleus of the stria terminalis (BST) has been known to contain estrogen (E)-concentrating neurons. In addition, injections of E into BST have been reported to potentiate the sympathoinhibitory arterial pressure (AP) and heart rate (HR) responses elicited by glutamate (Glu) stimulation. In this study, the effect of glutamate antagonist receptors in the rostral ventrolateral medulla (RVL...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 23  issue 3

pages  344- 353

publication date 2020-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023