Can Light Emitted from Smartphone Screens and Taking Selfies Cause Premature Aging and Wrinkles?
Authors
Abstract:
Since the early days of human life on the Earth, our skin has been exposed to different levels of light. Recently, due to inevitable consequences of modern life, humans are not exposed to adequate levels of natural light during the day but they are overexposed to relatively high levels of artificial light at night. Skin is a major target of oxidative stress and the link between aging and oxidative stress is well documented. Especially, extrinsic skin aging can be caused by oxidative stress. The widespread use of light emitting diodes (LEDs) and the rapidly increasing use of smartphones, tablets, laptops and desktop computers have led to a significant rise in the exposure of human eyes to short-wavelength visible light. Recent studies show that exposure of human skin cells to light emitted from electronic devices, even for exposures as short as 1 hour, may cause reactive oxygen species (ROS) generation, apoptosis, and necrosis. The biological effects of exposure to short-wavelength visible light in blue region in humans and other living organisms were among our research priorities at the Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC). Today, there is a growing concern over the safety of the light sources such as LEDs with peak emissions in the blue light range (400-490 nm). Recent studies aimed at investigating the effect of exposure to light emitted from electronic device on human skin cells, shows that even short exposures can increase the generation of reactive oxygen species. However, the biological effects of either long-term or repeated exposures are not fully known, yet. Furthermore, there are reports indicating that frequent exposure to visible light spectrum of the selfie flashes may cause skin damage and accelerated skin ageing. In this paper we have addressed the different aspects of potential effects of exposure to the light emitted from smartphones’ digital screens as well as smartphones’ photoflashes on premature aging of the human skin. Specifically, the effects of blue light on eyes and skin are discussed. Based on current knowledge, it can be suggested that changing the spectral output of LED-based smartphones’ flashes can be introduced as an effective method to reduce the adverse health effects associated with exposure to blue light.
similar resources
Exposure to Visible Light Emitted from Smartphones and Tablets Increases the Proliferation of Staphylococcus aureus: Can this be Linked to Acne?
Background: Due to rapid advances in modern technologies such as telecommunication technology, the world has witnessed an exponential growth in the use of digital handheld devices (e.g. smartphones and tablets). This drastic growth has resulted in increased global concerns about the safety of these devices. Smartphones, tablets, laptops, and other digital screens emit high levels of short-wav...
full textCan O2 dysregulation induce premature aging?
Chronic intermittent or episodic hypoxia, as occurs during a number of disease states, can have devastating effects, and prolonged exposure to this hypoxia can result in cell injury or cell death. Indeed, intermittent hypoxia activates a number of signaling pathways that are involved in oxygen sensing, oxidative stress, metabolism, catecholamine biosynthesis, and immune responsiveness. The cumu...
full textBlocking Short-Wavelength Component of the Visible Light Emitted by Smartphones’ Screens Improves Human Sleep Quality
Background: It has been shown that short-wavelength blue component of the visible light spectrum can alter the circadian rhythm and suppress the level of melatonin hormone. The short-wavelength light emitted by smartphones’ screens can affect the sleep quality of the people who use these devices at night through suppression of melatonin.Objectives: In this study, we examined the effects of co...
full textWomen with hereditary breast cancer predispositions should avoid using their smartphones, tablets and laptops at night
Breast cancer is the most common malignancy among women, both in the developed and developing countries. Women with mutations in the BRCA1 and BRCA2 genes have an increased risk of breast and ovarian cancers. Recent studies show that short-wavelength visible light disturb the secretion of melatonin and causes circadian rhythm disruption. We have previously studied the health effects of exposure...
full textexposure to visible light emitted from smartphones and tablets increases the proliferation of staphylococcus aureus: can this be linked to acne?
background : due to rapid advances in modern technologies such as telecommunication technology, the world has witnessed an exponential growth in the use of digital handheld devices (e.g. smartphones and tablets). this drastic growth has resulted in increased global concerns about the safety of these devices. smartphones, tablets, laptops, and other digital screens emit high levels of short-wave...
full textsynthesis of sulfides from alcohols and thiols in solvent-freeconditions and deoxygenation of sulfoxides
کاتالیست یک سنتز جدید برای تیواترها توصیف شده است. واکنش الکل ها با آریل، هتروآریل و آلکیل تیو ل ها درحضور 1،3،5- تری آزو- 2،4،6- تری فسفرین-2،2،4،4،6،6 هگزاکلراید ((tapc به عنوان یک کاتالیست موُثر، بازده های خوب تا عالی از تیواترها را حاصل می کند. علاوه براین، واکنش تحت شرایط بدون فلز و بدون حلال پیش می رود، بنابراین یک مکمل جالب برای روش های شناخته شده سنتز تیواترها ارائه می دهد. یک مکانیسم ا...
15 صفحه اولMy Resources
Journal title
volume 8 issue 4
pages -
publication date 2018-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023