Camera Pose Estimation in Unknown Environments using a Sequence of Wide-Baseline Monocular Images
Authors
Abstract:
In this paper, a feature-based technique for the camera pose estimation in a sequence of wide-baseline images has been proposed. Camera pose estimation is an important issue in many computer vision and robotics applications, such as, augmented reality and visual SLAM. The proposed method can track captured images taken by hand-held camera in room-sized workspaces with maximum scene depth of 3-4 meters. The system can be used in unknown environments with no additional information available from the outside world except in the first two images that are used for initialization. Pose estimation is performed using only natural feature points extracted and matched in successive images. In wide-baseline images unlike consecutive frames of a video stream, displacement of the feature points in consecutive images is notable and hence cannot be traced easily using patch-based methods. To handle this problem, a hybrid strategy is employed to obtain accurate feature correspondences. In this strategy, first initial feature correspondences are found using similarity of their descriptors and then outlier matchings are removed by applying RANSAC algorithm. Further, to provide a set of required feature matchings a mechanism based on sidelong result of robust estimator was employed. The proposed method is applied on indoor real data with images in VGA quality (640×480 pixels) and on average the translation error of camera pose is less than 2 cm which indicates the effectiveness and accuracy of the proposed approach.
similar resources
Direct Pose Estimation with a Monocular Camera
We present a direct method to calculate a 6DoF pose change of a monocular camera for mobile navigation. The calculated pose is estimated up to a constant unknown scale parameter that is kept constant over the entire reconstruction process. This method allows a direct calculation of the metric position and rotation without any necessity to fuse the information in a probabilistic approach over lo...
full text3D Pose Estimation using Synthetic Data over Monocular Depth Images
We proposed an approach for human pose estimation over monocular depth images. We augment the data by sampling from existing dataset and generate synthesized images. The generated dataset covers a more continuous pose space than the existing one. We use the generated dataset to train a multi-pathway neural network. We also introduced an orientation and translation invariant embedding for poses ...
full text3D Face pose estimation and tracking from a monocular camera
In this paper, we describe a new approach for estimating and tracking three-dimensional (3D) pose of a human face from the face images obtained from a single monocular view with full perspective projection. We assume that the shape of a 3D face can be approximated by an ellipse and that the aspect ratio of 3D face ellipse is given. Given a monocular image of a face, we ®rst perform an ellipse d...
full textCamera Pose Estimation Using Images of Planar Mirror Reflections
The image of a planar mirror reflection (IPMR) can be interpreted as a virtual view of the scene, acquired by a camera with a pose symmetric to the pose of the real camera with respect to the mirror plane. The epipolar geometry of virtual views associated with different IPMRs is well understood, and it is possible to recover the camera motion and perform 3D scene reconstruction by applying stan...
full textHuman Pose Estimation from Monocular Images: A Comprehensive Survey
Human pose estimation refers to the estimation of the location of body parts and how they are connected in an image. Human pose estimation from monocular images has wide applications (e.g., image indexing). Several surveys on human pose estimation can be found in the literature, but they focus on a certain category; for example, model-based approaches or human motion analysis, etc. As far as we...
full textMy Resources
Journal title
volume 6 issue 1
pages 93- 103
publication date 2018-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023