Calorific and greenhouse gas emission in municipal solid waste treatment using biodrying

Authors

  • B. Zaman Department of Environmental Engineering Faculty of Engineering Diponegoro University, Semarang, Indonesia
  • E. Sutrisno Department of Environmental Engineering Faculty of Engineering Diponegoro University, Semarang, Indonesia
  • M. Hadiwidodo Department of Environmental Engineering Faculty of Engineering Diponegoro University, Semarang, Indonesia
  • P. Purwono Center Science and Technology, IAIN Surakarta, Pandawa, Pucangan, Kartasura, Indonesia
  • W. Oktiawan Department of Environmental Engineering Faculty of Engineering Diponegoro University, Semarang, Indonesia
Abstract:

BACKGROUND AND OBJECTIVES: Urban intensity and activities produce a large amount of biodegradable municipal solid waste. Therefore, biodrying processing was adopted to ensure the conversion into Refuse Derived Fuel and greenhouse gases. METHODS: This study was performed at a greenhouse, using six biodrying reactors made from acrylic material, and equipped with digital temperature recording, blower, and flow meters. The variations in airflow (0, 2, 3, 4, 5, 6 L/min/kg) and the bulking agent (15%) were used to evaluate calorific value, degradation process and GHG emissions. FINDINGS: The result showed significant effect of airflow variation on cellulose content and calorific value. Furthermore, the optimum value was 6 L/min/kg, producing a 10.05% decline in cellulose content, and a 38.17% increase in calorific value. Also, the water content reduced from 69% to 40%. The CH4 concentration between control and biodrying substantially varied at 2.65 ppm and 1.51 ppm respectively on day 0 and at peak temperature. Morever, the value of N2O in each control was about 534.69 ppb and 175.48 ppb, while the lowest level was recorded after biodrying with 2 L/min/kg airflow. CONCLUSION: The calorific value of MSW after biodrying (refuse derived fuel) ranges from 4,713 – 6,265 cal/g. This is further classified in the low energy coal (brown coal) category, equivalent to <7,000 cal/g. Therefore, the process is proven to be a suitable alternative to achieve RDF production and low GHG emissions.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Estimation of gas emission from municipal solid waste landfill in Kuhdasht city using LandGEM software

Background: Large amount of solid waste is annually produced in Kuhdasht city. These waste materials are decomposed by anaerobic microorganisms after burying in disposal site and produce large amounts of gases (mainly methane and carbon dioxide). This study aimed to estimate the gas emission from solid waste disposal of Kuhdasht city using a tool known as LandGEM software. Materials and Method...

full text

Greenhouse Gas Emission Factors for Municipal Waste Combustion

Waste management practices can impact greenhouse gas (GHG) emissions by affecting energy consumption, methane generation, carbon sequestration, and non-energy-related manufacturing emissions. This paper examines GHG emissions and sinks, from a life-cycle perspective, for selected paper, glass, metal, and plastic materials comprising about one-third of municipal solid waste (MSW) generated in th...

full text

Greenhouse gas emission potential of the municipal solid waste disposal sites in Thailand.

Open dumping and landfilling are the prevalent solid waste disposal practices in Thailand. Surveys on the disposal sites revealed the presence of 95 landfills and 330 open dumps. Methane emission potential at these sites was estimated by three methods. Results of the Intergovernmental Panel on Climate Change (IPCC) method, Landfill Gas Emission model (LandGEM), and closed flux chamber technique...

full text

Greenhouse gas dynamics of municipal solid waste alternatives.

Previous greenhouse gas studies comparing landfilling with combustion of municipal solid waste (MSW) are limited to examinations of the emissions weighted by their relative radiative activity. This paper adds another dimension by analyzing the atmospheric response to these emissions. The heart of the analysis is a time-dependent model using a perturbation analysis of the IS92a results of the In...

full text

Municipal solid waste management scenarios for Attica and their greenhouse gas emission impact.

Disposal of municipal solid waste in sanitary landfills is still the main waste management method in the Attica region, as in most regions of Greece. Nevertheless, diversion from landfilling is being promoted by regional plans, in which the perspectives of new waste treatment technologies are being evaluated. The present study aimed to assess the greenhouse gas (GHG) emissions impact of differe...

full text

Prediction of Greenhouse Gas Emissions in Municipal Solid Waste Landfills Using LandGEM and IPCC Methods in Yazd, Iran

Introduction: The increase in greenhouse gas (GHG) emissions has changed the global temperature and had a negative impact on global climate conditions. Landfill gas is one of the major GHG contributors. With the knowledge of GHG inventory, it is possible to carry out disaster prevention measures. Materials and Methods: In this study, tow Landfill Gas Emissions Modeling (LandGEM) and Intergover...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 1

pages  33- 46

publication date 2021-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023