Buckling Study of Thin Tank Filled with Heterogeneous Liquid
Authors
Abstract:
Buckling of imperfect thin shell tank which is subjected to uniform axial compression is analyzed. The effect of internal pressure on the stability of a shell tank filled with a homogeneous-heterogeneous liquid was considered. Investigation of the liquid nature effect on reduction of the shell buckling load is performed by using the finite elements method. Calculating results in terms of analytical formula give a good agreement with the numerical results given by Abaqus when using actual measurements. The obtained results show the influence of the physical characteristics of liquid especially in the case of heterogeneous liquid. The study of combination between compression load, lateral pressure and the mechanical properties of liquid filling the tank is recommended for dimensioning the shell tanks to avoid the buckling phenomenon.
similar resources
Axially Symmetric Vibrations of a Liquid-Filled Poroelastic Thin Cylinder Saturated with Two Immiscible Liquids Surrounded by a Liquid
This paper studies axially symmetric vibrations of a liquid-filled poroelastic thin cylinder saturated with two immiscible liquids of infinite extent that is surrounded by an inviscid elastic liquid. By considering the stress free boundaries, the frequency equation is obtained. Particular case, namely, liquid-filled poroelastic cylinder saturated with single liquid is discussed. When the waven...
full textA Study on Liquid-liquid Mixing in a Stirred Tank with a 6-Blade Rushton Turbine
The turbulent flow field generated in a baffled stirred tank was computed by large eddy simulation (LED) and the flow field was developed using the Sliding Mesh (SM) approach. In this CFD study, mixing times and power number have been determined for a vessel agitated by a 6-blade Rushton turbine. The predicted results were compared with the published experimental data. The satisfactory results ...
full textInelastic Behavior of Concrete-filled Thin-walled Steel Tubular Columns Subjected to Local Buckling
This paper is concerned with the inelastic behavior of axially loaded concrete-filled thin-walled steel tubular columns subjected to local buckling. A nonlinear fiber element analysis program accounting for local buckling effects is developed for predicting the ultimate strength and ductility of concrete-filled thin-walled steel tubular columns. The effects of local buckling are taken into cons...
full textBuckling of liquid columns.
Under appropriate conditions, a column of viscous liquid falling onto a rigid surface undergoes a buckling instability. Here we show experimentally and theoretically that liquid buckling exhibits a hitherto unsuspected complexity involving three different modes-viscous, gravitational, and inertial-depending on how the viscous forces that resist bending of the column are balanced. We also find t...
full textAnalysis of Thin-Walled Steel Sections Filled with Concrete Using Non-Linear Finite Element Method
Being economical and performing well under cyclic loads, steel sections filled with concrete have been widely used in structural buildings. Extensive studies and experiments have been conducted to investigate the influence of different parameters and loadings on the behavior of these structural components. Based on the data available from previous experiments and studies, this paper discusses t...
full textSloshing of Liquid in Partially Filled Container – An Experimental Study
This paper deals with the experimental studies of sloshing of liquid in partially filled container subjected to external excitation. An experimental set-up is designed to study the behavior of liquid sloshing in partially filled prismatic container. At every instant of time, slosh amplitude is computed at specified location with the help of capacitance probe. The resulting slosh heights for var...
full textMy Resources
Journal title
volume 9 issue 4
pages 802- 810
publication date 2017-12-30
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023