Buckling of Stiffened Thin-Walled Cylindrical Shells under Axial Compression with Symmetrical Imperfections
author
Abstract:
This study aimed to investigate the effects of stiffeners on buckling of thin cylindrical shells under uniform axial compression. To this end, more than 300 finite element models of stiffened cylindrical shells were prepared. The variables considered are shell thickness, number, dimension and the location of the vertical and horizontal stiffeners as well as circular symmetrical imperfections. Results show that the stiffeners can increase buckling of the stiffened cylindrical shells under axial compression. It is also shown that buckling of the cylindrical shells is susceptible to some circular imperfection patterns. In this context, buckling graph of the models are compared with each other; obviously, the stiffened shells with more stiffeners have upper buckling graph in force - displacement curves.
similar resources
buckling of stiffened thin-walled cylindrical shells under axial compression with symmetrical imperfections
this study aimed to investigate the effects of stiffeners on buckling of thin cylindrical shells under uniform axial compression. to this end, more than 300 finite element models of stiffened cylindrical shells were prepared. the variables considered are shell thickness, number, dimension and the location of the vertical and horizontal stiffeners as well as circular symmetrical imperfections. r...
full textNumerical buckling analysis of thin cylindrical shells with combined distributed and local geometrical imperfections under uniform axial compression
In this paper, individual and combined effects of distributed and local geometrical imperfections on the limit load of an isotropic, thin-walled cylindrical shell under axial compression are investigated. First eigen affine mode shape imperfection pattern (FEAMSIP) is taken as distributed geometrical imperfections and dent as local geometrical imperfections. Limit load of the cylindrical shells...
full textDynamic buckling of thin cylindrical shells under axial impact
The dynamic buckling of thin isotropic thermoviscoplastic cylindrical shells compressed with a uniform axial velocity prescribed at the end faces is investigated analytically and numerically. In the first part of the paper, the stressed/deformed state of a shell is assumed to have buckled if infinitesimal perturbations superimposed upon it grow. Cubic algebraic equations are derived for both th...
full textBuckling of Stiffened Thin Walled Cylindrical Shells due to Global Shear
Thin walled cylindrical shells are important components of industrial structures such as liquid storage tanks, silos, etc. Shell buckling is usually a major failure mode of thin walled shells under extreme loads such as earthquakes. Longitudinal and radial stiffeners are generally used in order to increase buckling capacity of thin walled shells. During an earthquake, cylindrical shells may exp...
full textElastic Buckling Analysis of Ring and Stringer-stiffened Cylindrical Shells under General Pressure and Axial Compression via the Ritz Method
Elastic stability of ring and stringer-stiffened cylindrical shells under axial, internal and external pressures is studied using Ritz method. The stiffeners are rings, stringers and their different arrangements at the inner and outer surfaces of the shell. Critical buckling loads are obtained using Ritz method. It has been found that the cylindrical shells with outside rings are more stable th...
full textBuckling of cracked cylindrical thin shells under combined internal pressure and axial compression
Linear eigenvalue analysis of cracked cylindrical shells under combined internal pressure and axial compression is carried out to study the effect of crack type, size and orientation on the buckling behavior of cylindrical thin shells. Two types of crack are considered; through crack and thumbnail crack. Our calculations indicate that depending on the crack type, length, orientation and the int...
full textMy Resources
Journal title
volume 2 issue 2
pages 19- 28
publication date 2012-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023