Buckling Behavior of Semi-scale Steel Tank with Carbon Fiber Reinforced Polymer Ring Subjected to Lateral Uniform Pressure Loading
Authors
Abstract:
Research on increasing the buckling strength of tanks carrying fluid and also cylindrical shells of thin-walled steel in civil engineering and mechanics is important. This is due to the widespread use of these structures in the industry. Due to the low thickness of the body and also due to the pressure forces entering these tanks, these structures are exposed to lateral buckling. In this research, the use of Carbon Fiber Reinforced Polymer (CFRP) rings to enhance and increase the buckling strength of tanks has been investigated. For this study, a tank with dimensions close to the actual tanks has been built and reinforced by a CFRP ring against the buckling. The results of the experiment indicated that the use of CFRP reinforcing ring considerably enhanced the buckling and post-buckling capacity of the tank. Further, comparing the results obtained from the experimental and numerical analysis and the values extracted from the theoretical relationships suggested that the results are in good agreement.
similar resources
Numerical and Experimental Investigations on the Behavior of Steel-reinforced Concrete Columns Subjected to Eccentric Loading
Steel-reinforced concrete (SRC) columns, which are classified as composite columns, became the most widely used in recent years; because of their extensive advantages over the reinforced concrete and the steel columns. In this paper, the ductility index and its influential factors were explored to investigate the behavior of SRC columns. A straightforward approach was then proposed by establish...
full textBehavior of Coupling Beams Strengthened with Carbon Fiber Reinforced Polymer Sheets
In this research, using the results of 6 tests, the effect of Carbon Fiber Reinforced Polymer (CFRP) sheets on the behavior of reinforced concrete coupling beams of shear walls is studied. First, in the experimental part of the study, four coupling beams with different reinforcements were manufactured and tested. Then, after the failure of the specimens, two of them were rehabilitated and stren...
full textBuckling of Carbon Nanotube - Reinforced Polymer Laminated Composite Materials Subjected to Axial Compression and Shear Loadings
A multi-scale method to predict the stiffness and stability properties of carbon nanotube-reinforced laminates has been developed. This method is used in the prediction of the buckling behavior of laminated carbon nanotube-polyethylene composites formed by stacking layers of carbon nanotube-reinforced polymer with the nanotube alignment axes of each layer oriented in different directions. Linki...
full textFinite Element Analysis of Buckling of Thin Cylindrical Shell Subjected to Uniform External Pressure
One of the common failure modes of thin cylindrical shell subjected external pressure is buckling. The buckling pressure of these shell structures are dominantly affected by the geometrical imperfections present in the cylindrical shell which are very difficult to alleviate during manufacturing process. In this work, only three types of geometrical imperfection patterns are considered namely (a...
full textMechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets
This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip...
full textField Study and Evaluation of Buckling Behavior of Cylindrical Steel Tanks with Geometric Imperfections under Uniform External Pressure
Construction and assembling process of shell structures has caused main problems. In these structures, there is no possibility for the integrated construction due to their large shell extent and they are built using a number of welded curved panel parts; hence, some geometrical imperfections emerge. Most of these imperfections are caused by the process of welding, transportation, inappropriate ...
full textMy Resources
Journal title
volume 32 issue 10
pages 1407- 1415
publication date 2019-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023