Buckling Analysis of a Fiber Reinforced Laminated Composite Plate with Porosity
Authors
Abstract:
Fiber-reinforced laminated composites are frequently preferred in many engineering projects. With the development in production technology, the using of the fiber reinforced laminated composites has been increasing in engineering applications. In the production stage of the fiber-reinforced laminated composites, porosities could be occurred due to production or technical errors. After a level of the porosity, the mechanical behaviors of composite materials change significantly. This paper presents buckling analysis of fiber-reinforced laminated composite plate with porosity effects within the first shear deformation plate theory. In the porosity effect, three different porosity models are used in the laminated composite plate. The material properties of the laminas are considered as orthotropic property. In the solution of the problem, the Navier procedure is used for the simply supported plate. Influences of the porosity coefficients, the porosity models, the fiber orientation angles and the sequence of laminas on the critical buckling loads are presented and discussed.
similar resources
Buckling Analysis of Woven Glass Epoxy Laminated Composite Plate
Buckling behavior of laminated composite plates subjected to in-plane loads is an important consideration in the preliminary design of aircraft components. The sizing of many structural subcomponents of the aircraft structures is often determined by stability constraints. The objective of the current study is to understand the influence of the length-to-thickness ratio, the aspect ratio, the fi...
full textVibration and Buckling Behaviour of Laminated Composite Plate
Free vibration and buckling responses of laminated composite plate in the framework of first order shear deformation theory is analysed. The model has been developed in ANSYS using ANSYS parametric design language code. The model has been developed in ANSYS using ANSYS parametric design language code. In this study two shell elements (SHELL181/SHELL281) have been chosen from the ANSYS element l...
full textOptimum Design of Symmetric Laminated Reinforced Plate Subjected to in-Plane Compressive Loading: Buckling Analysis
ثد لانبد نم دهلا ليد لا د ا س ندده نل ا لا نةادد لانملي داملنجيدع ن ميديللأي ن ن. بإ ن ن دم ن د اعينملي دالانادمالنجيدع نلاانلد نهيجاا, ي الانا ُن, هجادلان نن ن ضا لاندنتا سيغا لانب ن د ج مييلأ ن ن دك لاندن يقسلانملي الا نسي رداندن ديمكلان ي داملن ن جيددع نلاانلدد ن دد نيددهب سن ددانتا سدديغا لانهيددهن. ددي د لانمدسددظلا ن نسدداينعلانن يددنس ن ا صادد ي نملي ددالانبدد ن دد نلدديم ا ناددليند نة ...
full textBuckling Studies on Laminated Composite Skew Plates
This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...
full textBuckling Studies on Laminated Composite Skew Plates
This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...
full textBuckling Studies on Laminated Composite Skew Plates
This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...
full textMy Resources
Journal title
volume 50 issue 2
pages 375- 380
publication date 2019-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023