Bridging the semantic gap for software effort estimation by hierarchical feature selection techniques
Authors
Abstract:
Software project management is one of the significant activates in the software development process. Software Development Effort Estimation (SDEE) is a challenging task in the software project management. SDEE is an old activity in computer industry from 1940s and has been reviewed several times. A SDEE model is appropriate if it provides the accuracy and confidence simultaneously before software project contract. Due to the uncertain nature of development estimates and in order to increase the accuracy, researchers recently have focused on machine learning techniques. Choosing the most effective features to achieve higher accuracy in machine learning is crucial. In this paper, for narrowing the semantic gap in SDEE, a hierarchical method of filter and wrapper Feature Selection (FS) techniques and a fused measurement criteria are developed in a two-phase approach. In the first phase, two stage filter FS methods provide start sets for wrapper FS techniques. In the second phase, a fused criterion is proposed for measuring accuracy in wrapper FS techniques. Experimental results show the validity and efficiency of the proposed approach for SDEE over a variety of standard datasets.
similar resources
Improvement of effort estimation accuracy in software projects using a feature selection approach
In recent years, utilization of feature selection techniques has become an essential requirement for processing and model construction in different scientific areas. In the field of software project effort estimation, the need to apply dimensionality reduction and feature selection methods has become an inevitable demand. The high volumes of data, costs, and time necessary for gathering data , ...
full textEvolutionary Computing Techniques for Software Effort Estimation
Reliable and accurate estimation of software has always been a matter of concern for industry and academia. Numerous estimation models have been proposed by researchers, but no model is suitable for all types of datasets and environments. Since the motive of estimation model is to minimize the gap between actual and estimated effort, the effort estimation process can be viewed as an optimizatio...
full textSoft computing techniques for software effort estimation
The effort invested in a software project is probably one of the most important and most analyzed variables in recent years in the process of project management. The limitation of algorithmic effort prediction models is their inability to cope with uncertainties and imprecision surrounding software projects at the early development stage. More recently attention has turned to a variety of machi...
full textAn Improved Algorithmic Method for Software Development Effort Estimation
Accurate estimating is one of the most important activities in the field of software project management. Different aspects of software projects must be estimated among which time and effort are of significant importance to efficient project planning. Due to complexity of software projects and lack of information at the early stages of project, reliable effort estimation is a challenging issue. ...
full textAn Improved Algorithmic Method for Software Development Effort Estimation
Accurate estimating is one of the most important activities in the field of software project management. Different aspects of software projects must be estimated among which time and effort are of significant importance to efficient project planning. Due to complexity of software projects and lack of information at the early stages of project, reliable effort estimation is a challenging issue. ...
full textBridging the Semantic Gap
Content-based image retrieval systems were introduced as an alternative to avoid the need of manual tagging in traditional keyword-based image retrieval systems. However, the representation of image using visual features only involves a loss of information which is referred to as semantic gap. A number of techniques have been proposed to deal with ‘semantic gap’. This paper reviews existing app...
full textMy Resources
Journal title
volume 4 issue 2
pages 157- 168
publication date 2016-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023