Bounds for the Regularity of Edge Ideal of Vertex Decomposable and Shellable Graphs
Authors
Abstract:
This article doesn't have abstract
similar resources
Constructing vertex decomposable graphs
Recently, some techniques such as adding whiskers and attaching graphs to vertices of a given graph, have been proposed for constructing a new vertex decomposable graph. In this paper, we present a new method for constructing vertex decomposable graphs. Then we use this construction to generalize the result due to Cook and Nagel.
full textEdge-coloring Vertex-weightings of Graphs
Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...
full textVertex-decomposable Graphs, Codismantlability, Cohen-Macaulayness, and Castelnuovo-Mumford Regularity
We call a vertex x of a graph G = (V,E) a codominated vertex if NG[y] ⊆ NG[x] for some vertex y ∈ V \{x}, and a graph G is called codismantlable if either it is an edgeless graph or it contains a codominated vertex x such that G − x is codismantlable. We show that (C4, C5)-free vertex-decomposable graphs are codismantlable, and prove that if G is a (C4, C5, C7)-free well-covered graph, then ver...
full textconstructing vertex decomposable graphs
recently, some techniques such as adding whiskers and attaching graphs to vertices of a given graph, have been proposed for constructing a new vertex decomposable graph. in this paper, we present a new method for constructing vertex decomposable graphs. then we use this construction to generalize the result due to cook and nagel.
full textA note on vertex-edge Wiener indices of graphs
The vertex-edge Wiener index of a simple connected graph G is defined as the sum of distances between vertices and edges of G. Two possible distances D_1(u,e|G) and D_2(u,e|G) between a vertex u and an edge e of G were considered in the literature and according to them, the corresponding vertex-edge Wiener indices W_{ve_1}(G) and W_{ve_2}(G) were introduced. In this paper, we present exact form...
full textMy Resources
Journal title
volume 36 issue No. 2
pages 267- 277
publication date 2011-01-03
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023