Bonding of Phosphoramides onto B-C59 Nanostructure as Drug Delivery Systems

author

  • Zahra Shariatinia Department of Chemistry, Amirkabir University of Technology (Tehran Polytechnic), P.O.Box: 15875-4413, Tehran, Iran.
Abstract:

The structures of boron-doped fullerene B-C59 (1) as a drug delivery system (DDS), two phosphoramides (2 and 3) which were analogous to the cyclophosphamide anticancer prodrug as well as their covalently bonded structures to B-C59 (4 and 5) were optimized by DFT computations at B3LYP level of theory using 6-31G(d) basis set. Comparing compounds 4 and 5 revealed that the chloro derivative (-1429544.59 kcal/mol) was more stable than its bromo analogue (-1429531.23 kcal/mol). The dipole moments of isolated drugs had almost half values compared with those of their related covalently bonded compounds with B-C59 reflecting attachment of drugs to the B-C59 considerably enhanced the polarity of the whole systems which was a desired property for drug delivery in biological media. The negative ΔGinteraction values for compounds 4 and 5 confirmed that attachments of both drugs on the surface of B-C59 were spontaneously taken place. The negative ΔHinteraction values for both compounds 4 and 5 reflected these interactions were exothermic (ΔHinteraction<0). The density of states (DOS) spectra disclosed that there were very strong hybridizations between the orbitals of B-C59 and the drug molecules. The oxygen atoms of P=O and P–O bonds revealed  values about 5.0 and 10.0 MHz, respectively that might be because of more positive oxygen atoms in P–O bonds that had a greater interaction with EFG tensor. It was established that the DDS 4 was preferred for the cancer therapy applications due to its greater Ebinding, ΔHinteraction and ΔGinteraction values compared with those of DDS 5.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Pluronic as nano-carier for drug delivery systems

A common approach for building a drug delivery system is to incorporate the drug within the nanocarrier that results in increased solubility, metabolic stability, and improved circulation time. However, recent developments indicate that selection of polymer nanomaterials can implement more than only inert carrier functions by being biological response modifiers. One representative of such mater...

full text

Novel transdermal drug delivery systems

Background and aim: Eczema is a common inflammatory skin disease. Although history and physical examination are important in diagnosis of allergen, because of extent of environmental allergens, those are not simply recognized. The objective of this study was to determine allergens in patients with contact or atopic dermatitis referred to Razi hospital.Materials and Meth...

full text

Nanoparticles as drug delivery systems.

Controlled drug delivery systems (DDS) have several advantages compared to the traditional forms of drugs. A drug is transported to the place of action, hence, its influence on vital tissues and undesirable side effects can be minimized. Accumulation of therapeutic compounds in the target site increases and, consequently, the required doses of drugs are lower. This modern form of therapy is esp...

full text

Lipobeads as Drug Delivery Systems

A relatively new type of nanoparticles – lipobeads – a liposome-hydrogel assembly is a novel drug delivery system. Due to their bi-compartmental structure, lipobeads are of great potential for application as drug carriers with high therapeutic efficiency. It was shown that aggregation of lipobeads and its reversibility can be controlled by the hydrophobic modification of nanogels and their ther...

full text

Drug Delivery: Plant Lectins as Bioadhesive Drug Delivery Systems

Selective targeting of drugs to the proposed site of action provides therapeutic advantages such as reduced toxicity and smaller dose levels. Despite a huge progress made in drug design and delivery systems, many challenges still have to be solved. Small therapeutic drugs always have the potential to pass into the kidneys and be excreted from the body. The use of macromolecular constructs (carr...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 6  issue 1

pages  15- 29

publication date 2018-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023