Blood Brain Barrier Disruption by Focused Ultrasound and Microbubbles: A Numerical Study on Mechanical Effects

Authors

  • Hossein Ghadiri Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
  • Zahra Khodabakhshi Medical Physics and Biomedical Engineering Department, Tehran University of Medical Sciences, Tehran, Iran Research Center for Molecular and Cellular Imaging, Tehran University of Medical Sciences, Tehran, Iran
Abstract:

Introduction: Microbubbles are widely used as contrast agent in diagnostic ultrasound. Recently they have shown good potential for applications in the therapeutic field such as drug delivery to the brain. Recent studies have shown focused ultrasound in conjunction with injected micro-bubbles could temporarily disrupt blood-brain barrier and let therapeutic agents transport into the brain tissue. The main aim of current study was to investigate, the interactions between ultrasonic acoustic field and microbubbles and the resultant mechanical effects on microvessels. Materials and Methods: In this study, we have used numerical approach to simulate microbubble confined in a microvessel filled with viscose fluid as blood. In the main stream of our study two crucial equations have been solved: equation of bubble oscillation on the bubble surface in an ultrasonic acoustic field (R-P equation), and equations of mass conservation and continuity (Navier Stokes) in fluid domain. Microbubble radius change, subjected to ultrasonic wave, and the force-fluid coupling which cause high velocity gradient and subsequent exertion of shear stress on interior vessel wall have been calculated. In this study microvessel considered as a viscoelastic solid. Acoustic pressure amplitude has been varied between 1.5P0 and 5P0 (P0 is hydrostatic pressure in fluid, P0~ 104.6kPa) with a constant frequency (f=1MHz). Then at a constant pressure of 2.5P0 acoustic frequency has been changed between 1 and 6MHz. Shear stress and transmural pressure, two important metrics for mechanical effects and vessel damage, have been calculated for each case. Results: The results obtained from the preliminary analysis of simulation study demonstrate that by increasing acoustic pressure both shear stress and transmural pressure increase linearly between 4-20 and 300-650kPa respectively. When the acoustic pressure reached the value 5P0 vessel ruptured and at this point, our simulation was stopped. This study has shown that by increasing acoustic frequency, relative difference of bubble radius, increase to%66 and then decrease to %12. In this case, shear stress and transmural pressure reached almost to a maximum of 10 and 450kPa respectively. Conclusion:  The present study has gone some way towards enhancing our understanding of interaction between the acoustic field and micro bubbles. Mechanical effects on vessel wall are pressure and frequency dependant and it’s important to find a threshold for acoustic pressure that below it vessel damages won’t occur. This study has identified threshold for acoustic pressure is about 0.45P0. Also, it is very important to consider microbubbles resonance frequency at which maximum amplitude of oscillation and mechanical effects occur.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Effects on P-Glycoprotein Expression after Blood-Brain Barrier Disruption Using Focused Ultrasound and Microbubbles

Many blood-borne substances attempting to pass through the luminal membrane of brain endothelial cells are acted upon by a variety of metabolizing enzymes or are actively expelled back into the capillary lumen by embedded efflux transporters, such as Permeability-glycoprotein (Pgp). Overexpression of this protein has also been linked to multidrug resistance in cancer cells. Previous studies hav...

full text

Localized Down-regulation of P-glycoprotein by Focused Ultrasound and Microbubbles induced Blood-Brain Barrier Disruption in Rat Brain

Multi-drug resistant efflux transporters found in Blood-Brain Barrier (BBB) acts as a functional barrier, by pumping out most of the drugs into the blood. Previous studies showed focused ultrasound (FUS) induced microbubble oscillation can disrupt the BBB by loosening the tight junctions in the brain endothelial cells; however, no study was performed to investigate its impact on the functional ...

full text

Targeted and Reversible Blood-Retinal Barrier Disruption via Focused Ultrasound and Microbubbles

The blood-retinal barrier (BRB) prevents most systemically-administered drugs from reaching the retina. This study investigated whether burst ultrasound applied with a circulating microbubble agent can disrupt the BRB, providing a noninvasive method for the targeted delivery of systemically administered drugs to the retina. To demonstrate the efficacy and reversibility of such a procedure, five...

full text

Blood-brain barrier disruption induced by diagnostic ultrasound combined with microbubbles in mice

Objective To investigate the effects of the microbubble (MB) dose, mechanism index (MI) and sonication duration on blood-brain barrier (BBB) disruption induced by diagnostic ultrasound combined with MBs as well as to investigate the potential molecular mechanism. Results The extent of BBB disruption increased with MB dose, MI and sonication duration. A relatively larger extent of BBB disrupti...

full text

Multiple sessions of liposomal doxorubicin and focused ultrasound mediated blood-brain barrier disruption: safety study

Background/introduction Transcranial MRI-guided focused ultrasound is a rapidly advancing field for delivering therapeutic and imaging agents to the brain. It has the ability to facilitate the passage of therapeutics from the vasculature to the brain parenchyma, which is normally protected by the blood-brain barrier (BBB). Its main advantages are that it is targeted, noninvasive, and readily re...

full text

Power cavitation-guided blood-brain barrier opening with focused ultrasound and microbubbles.

Image-guided monitoring of microbubble-based focused ultrasound (FUS) therapies relies on the accurate localization of FUS-stimulated microbubble activity (i.e. acoustic cavitation). Passive cavitation imaging with ultrasound arrays can achieve this, but with insufficient spatial resolution. In this study, we address this limitation and perform high-resolution monitoring of acoustic cavitation-...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue Special Issue-12th. Iranian Congress of Medical Physics

pages  103- 103

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023