Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

author

Abstract:

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire image. To reduce this complexity, block-based CS (BCS) image reconstruction algorithms have been developed in which the image sampling and reconstruction processes are applied on a block by block basis. In almost all the existing BCS methods, a fixed transform is used to achieve a sparse representation of the image. however such fixed transforms usually do not achieve very sparse representations, thereby degrading the reconstruction quality. To remedy this problem, we propose an adaptive block-based transform, which exploits the correlation and similarity of neighboring blocks to achieve sparser transform coefficients. We also propose an adaptive soft-thresholding operator to process the transform coefficients to reduce any potential noise and perturbations that may be produced during the reconstruction process, and also impose sparsity. Experimental results indicate that the proposed method outperforms several prominent existing methods using four different popular image quality assessment metrics.

Download for Free

Sign up for free to access the full text

Already have an account?login

similar resources

Compressive Sensing Based Image Reconstruction using Wavelet Transform

Compressive Sensing is a novel technique where reconstruction of an image can be done with less number of samples than conventional Nyquist theorem suggests. The signal will pass through sensing matrix wavelet transformation to make the signal sparser enough which is a criterion for compressive sensing. The low frequency and high frequency components of an image have different kind of informati...

full text

Adaptive thresholding of wavelet coefficients

Wavelet techniques have become an attractive and efficient tool in function estimation. Given noisy data, its discrete wavelet transform is an estimator of the wavelet coefficients. It has been shown by Donoho and Johnstone (Biometrika 81 (1994) 425-455) that thresholding the estimated coefficients and then reconstructing an estimated function reduces the expected risk close to the possible min...

full text

Speech Enhancement Using EMD Based Adaptive Soft-Thresholding (EMD-ADT)

This paper presents a novel algorithm of speech enhancement using data adaptive softthresolding technique. The noisy speech signal is decomposed into a finite set of band limited signals called intrinsic mode functions (IMFs) using empirical mode decomposition (EMD). Each IMF is divided into fixed length subframes. On the basis of noise contamination, the subframes are classified into two group...

full text

Image Reconstruction based on Block-based Compressive Sensing

The data of interest are assumed to be represented as Ndimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signals can be reconstructed accurately using only a small number of basis function coefficients associated with B. A new approach based on Compressive Sensing (CS) framework which is a theory that one may achieve an exact signal reconstru...

full text

Iterative thresholding compressed sensing MRI based on contourlet transform

Reducing the acquisition time is important for clinical magnetic resonance imaging (MRI). Compressed sensing has recently emerged as a theoretical foundation for the reconstruction of magnetic resonance (MR) images from undersampled k-space measurements, assuming those images are sparse in a certain transform domain. However, most real-world signals are compressible rather than exactly sparse. ...

full text

Fast Compressive Sensing Recovery with Transform-based Sampling

We present a fast compression sensing (CS) reconstruction algorithm with computation complexity O(M2), where M denotes the length of a measurement vector Y = φX that is sampled from the signal X of length N via the sampling matrix φ with dimensionality M ×N . Our method has the following characteristics: (1) it is fast due to a closedform solution is derived; (2) it is accurate because signific...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 17  issue 1

pages  131- 146

publication date 2020-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023