Bishop-Phelps type Theorem for Normed Cones

Authors

Abstract:

In this paper the notion of  support points of convex sets  in  normed cones is introduced and it is shown that in a  continuous normed cone, under the appropriate conditions, the set of support points of a  bounded Scott-closed convex set is nonempty. We also present a Bishop-Phelps type Theorem for normed cones.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The Nonlinear Separation Theorem and a Representation Theorem for Bishop-Phelps Cones

The paper presents a theorem for representation a given cone as a Bishop–Phelps cone in normed spaces and studies interior and separation properties for Bishop–Phelps cones. The representation theorem is formulated in the form of a necessary and sufficient condition and provides relationship between the parameters determining the BishopPhelps cone. The necessity is given in reflexive Banach spa...

full text

Quotient normed cones

Given a normed cone (X , p) and a subcone Y, we construct and study the quotient normed cone (X/Y, p̃) generated by Y . In particular we characterize the bicompleteness of (X/Y, p̃) in terms of the bicompleteness of (X , p), and prove that the dual quotient cone ((X/Y )∗,‖ · ‖p̃,u) can be identified as a distinguished subcone of the dual cone (X∗,‖ · ‖p,u). Furthermore, some parts of the theory ar...

full text

On the Phelps-Koopmans theorem

We examine whether the Phelps–Koopmans theorem is valid in models with nonconvex production technologies. We argue that a nonstationary path that converges to a capital stock above the smallest golden rule may indeed be efficient. This finding has the important implication that “capital overaccumulation” need not always imply inefficiency. Under mild regularity and smoothness assumptions, we pr...

full text

The Mergelyan-Bishop Theorem

We define the differential operator ∂ ∂z on infinitely differentiable functions (also called smooth or C∞ functions) on some open set in C by ∂ ∂z = 1 2 ( ∂ ∂x + i ∂ ∂y ). A quick calculation shows that ∂ ∂z obeys the product rule. Recall that a function f is holomorphic if and only if ∂ ∂z (f) = 0. A function is biholomorphic, or an analytic isomorphism, if it is holomorphic and has holomorphi...

full text

Egoroff Theorem for Operator-Valued Measures in Locally Convex Cones

In this paper, we define the almost uniform convergence and the almost everywhere convergence for cone-valued functions with respect to an operator valued measure. We prove the Egoroff theorem for Pvalued functions and operator valued measure θ : R → L(P, Q), where R is a σ-ring of subsets of X≠ ∅, (P, V) is a quasi-full locally convex cone and (Q, W) is a locally ...

full text

The Phelps–Koopmans theorem and potential optimality

The Phelps–Koopmans theorem states that if every limit point of a path of capital stocks exceeds the “golden rule,” then that path is inefficient: there is another feasible path from the same initial stock that provides at least as much consumption at every date and strictly more consumption at some date. I show that in a model with nonconvex technologies and preferences, the theorem is false i...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 2

pages  0- 0

publication date 2020-02

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023