Bernoulli operational matrix method for system of linear Volterra integral ‎equations

Authors

  • E. Hashemizadeh‎ Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, ‎Iran.
  • M. Mohsenyzadeh Department of Mathematics, Karaj Branch, Islamic Azad University, Karaj, ‎Iran.
Abstract:

In this paper, the numerical technique based on hybrid Bernoulli and Block-Pulse functions has been developed to approximate the solution of system of linear Volterra integral equations. System of Volterra integral equations arose in many physical problems such as elastodynamic, quasi-static visco-elasticity and magneto-electro-elastic dynamic problems. These functions are formed by the hybridization of Bernoulli polynomials and Block-Pulse functions which are orthonormal and have compact support on $[0, 1]$. By these orthonormal bases we drove new operational matrix which was a sparse matrix. By use of this new operational matrix we reduces the system of integral equations to a system of linear algebraic equations that can be solved easily by any usual numerical method. The numerical results obtained by the presented method have been compared with some existed methods and they have been in good agreement with the analytical solutions and other methods that prove the profit and efficiency of the proposed ‎method.‎

similar resources

bernoulli operational matrix method for system of linear volterra integral ‎equations

in this paper, the numerical technique based on hybrid bernoulli and block-pulse functions has been developed to approximate the solution of system of linear volterra integral equations. system of volterra integral equations arose in many physical problems such as elastodynamic, quasi-static visco-elasticity and magneto-electro-elastic dynamic problems. these functions are formed by the hybridi...

full text

Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method

In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...

full text

Application of Bernoulli wavelet method for numerical solution of fuzzy linear Volterra-Fredholm integral equations

This work, Bernoulli wavelet method is formed to solve nonlinear fuzzy Volterra-Fredholm integral equations. Bernoulli wavelets have been Created by dilation and translation of Bernoulli polynomials. First we introduce properties of Bernoulli wavelets and Bernoulli polynomials, and then we used it to transform the integral equations to the system of algebraic equations. We compared the result o...

full text

Numerical Solution of Weakly Singular Ito-Volterra Integral Equations via Operational Matrix Method based on Euler Polynomials

Introduction Many problems which appear in different sciences such as physics, engineering, biology, applied mathematics and different branches can be modeled by using deterministic integral equations. Weakly singular integral equation is one of the principle type of integral equations which was introduced by Abel for the first time. These problems are often dependent on a noise source which a...

full text

A finite difference method for the smooth solution of linear Volterra integral equations

The present paper proposes a fast numerical method for the linear Volterra integral equations withregular and weakly singular kernels having smooth solutions. This method is based on the approx-imation of the kernel, to simplify the integral operator and then discretization of the simpliedoperator using a forward dierence formula. To analyze and verify the accuracy of the method, weexamine samp...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 3

pages  201- 207

publication date 2016-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023