Benson's algorithm for nonconvex multiobjective problems via nonsmooth Wolfe duality
author
Abstract:
In this paper, we propose an algorithm to obtain an approximation set of the (weakly) nondominated points of nonsmooth multiobjective optimization problems with equality and inequality constraints. We use an extension of the Wolfe duality to construct the separating hyperplane in Benson's outer algorithm for multiobjective programming problems with subdifferentiable functions. We also formulate an infinitive approximation set of the (weakly) nondominated points of biobjective optimization problems. Moreover, we provide some numerical examples to illustrate the advantage of our algorithm.
similar resources
Decentralized Frank-Wolfe Algorithm for Convex and Nonconvex Problems
Decentralized optimization algorithms have received much attention due to the recent advances in network information processing. However, conventional decentralized algorithms based on projected gradient descent are incapable of handling high dimensional constrained problems, as the projection step becomes computationally prohibitive to compute. To address this problem, this paper adopts a proj...
full textThe Asynchronous PALM Algorithm for Nonsmooth Nonconvex Problems
We introduce the Asynchronous PALM algorithm, a new extension of the Proximal Alternating Linearized Minimization (PALM) algorithm for solving nonsmooth, nonconvex optimization problems. Like the PALM algorithm, each step of the Asynchronous PALM algorithm updates a single block of coordinates; but unlike the PALM algorithm, the Asynchronous PALM algorithm eliminates the need for sequential upd...
full textExtensions of Firefly Algorithm for Nonsmooth Nonconvex Constrained Optimization Problems
Firefly Algorithm (FA) is a stochastic population-based algorithm based on the flashing patterns and behavior of fireflies. Original FA was created and successfully applied to solve bound constrained optimization problems. In this paper we present extensions of FA for solving nonsmooth nonconvex constrained global optimization problems. To handle the constraints of the problem, feasibility and ...
full textInterior Epigraph Directions method for nonsmooth and nonconvex optimization via generalized augmented Lagrangian duality
We propose and study a new method, called the Interior Epigraph Directions (IED) method, for solving constrained nonsmooth and nonconvex optimization. The IED method considers the dual problem induced by a generalized augmented Lagrangian duality scheme, and obtains the primal solution by generating a sequence of iterates in the interior of the dual epigraph. First, a deflected subgradient (DSG...
full textOn efficiency and mixed duality for a new class of nonconvex multiobjective variational control problems
In this paper, we extend the notions of ( , ρ)-invexity and generalized ( , ρ)invexity to the continuous case and we use these concepts to establish sufficient optimality conditions for the considered class of nonconvexmultiobjective variational control problems. Further, multiobjective variational control mixed dual problem is given for the considered multiobjective variational control problem...
full textOptimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems with Cone Constraints and Applications
Abstract: In this work, a nonsmooth multiobjective optimization problem involving generalized invexity with cone constraints and Applications (for short, (MOP)) is considered. The Kuhn-Tucker necessary and sufficient conditions for (MOP) are established by using a generalized alternative theorem of Craven and Yang. The relationship between weakly efficient solutions of (MOP) and vector valued s...
full textMy Resources
Journal title
volume 43 issue 5
pages 975- 994
publication date 2017-10-31
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023