Behavioral Optimization of Pseudo-Neutral Hole in Hyperelastic Membranes Using Functionally graded Cables

Authors

  • Aliasghar Ataee Department of Mechanical Engineering, University of Tehran, Tehran, Iran
  • Reza Noroozi Department of Mechanical Engineering, University of Tehran, Tehran, Iran
Abstract:

Structures consisting of cables and membranes have been of interest to engineers due to their higher ratio of strength to weight and lower cost compared to other structures. One of the challenges in such structures is presence of holes in membranes, which leads to non-uniform stress and strain distributions, even under uniform far-field deformations. One of the approaches suggested for controlling this non-uniformity is reinforcing the hole edge using a cable, such that stretch changes near the hole are minimized compared to that of the far field in the membrane. In this study, considering an optimization problem, it is illustrated that for different geometries and stretch ratios in a biaxial loading of the membrane, a suitable cable of varying stiffness can be chosen such that stretch non-uniformity in the membrane is minimum, thus presenting a state of a pseudo-neutral hole in the membrane. The presented form of parametric functionally graded cable and the optimization problem solved for a couple of hole shapes show that the cable can induce a state of close to uniform stretch distribution for certain values of far field stretch ratios, it also proves effective for a range of such a ratio. Relative non-uniformity indices as low as 2 percent are achieved from optimization.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Design of Functionally Graded Structures Using Topology Optimization

The concept of functionally graded materials (FGMs) is closely related to the concept of topology optimization, which consists in a design method that seeks a continuum optimum material distribution in a design domain. Thus, in this work, topology optimization is applied to design FGM structures considering a minimum compliance criterion. The present approach applies the so-called “continuous t...

full text

Design of Functionally Graded Phononic Band Gaps Using Topology Optimization

Phononic band-gap materials prevent elastic waves from propagating at certain frequency ranges. These materials are called Phononic Crystals (PCs). PCs have been applied to manufacture frequency filters, vibration protection devices, waveguide and to improve ultrasound imaging transducers. Periodic band-gap materials are designed by choosing the location and the size of the band gaps. Many work...

full text

Topology Optimization Design of Functionally Graded Structures

1. Abstract Functionally Graded Materials (FGMs) possess continuously graded material properties and are characterized by spatially varying microstructures. Such materials are studied in conjunction with the concept of topology optimization design which determines holes and connectivities of the structure by adding and removing material in the extended fixed design domain. The objective is to d...

full text

Optimization of Functionally Graded Beams Resting on Elastic Foundations

In this study, two goals are followed. First, by means of the Generalized Differential Quadrature (GDQ) method, parametric analysis on the vibration characteristics of three-parameter Functionally Graded (FG) beams on variable elastic foundations is studied. These parameters include (a) three parameters of power-law distribution, (b) variable Winkler foundation modulus, (c) two-parameter elasti...

full text

Stress Concentration Factor in a Functionally Graded Material Plate around a Hole

Stress concentration factors have been examined in a functionally graded material (FGM) plate with central holes in different shapes in this essay. The material properties change along the thickness of plate. ABAQUS software has been utilized for modeling of problem in which subroutine of ABAQUS sub-program was used for modeling of the targeted material. The considering shapes for hole in plate...

full text

Stress Concentration Factor in a Functionally Graded Material Plate around a Hole

Stress concentration factors have been examined in a functionally graded material (FGM) plate with central holes in different shapes in this essay. The material properties change along the thickness of plate. ABAQUS software has been utilized for modeling of problem in which subroutine of ABAQUS sub-program was used for modeling of the targeted material. The considering shapes for hole in plate...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 49  issue 2

pages  282- 291

publication date 2018-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023