Behavior of Cu-Cr Powder Mixtures During Mechanical Alloying (TECHNICAL NOTE)

Authors

Abstract:

In the present work, the behavior of Cu-Cr powder mixtures during mechanical alloying has been studied. The powder mixtures with 1, 3 and 6 weight percents of Cr in Cu were treated. They were milled in a ball mill with two different speeds of 250 and 500 rpm using equal numbers of 1 and 2 centimeters balls. The weight ratio of balls to powders was 10 to 1 under argon atmosphere. Ethanol was used as the process control agent and milling times were 4, 12, 48 and 96 hours. After every hour of milling, a half–an–hour stop was applied to avoid temperature rise. The milled powder mixture was evaluated by a scanning electron microscope equipped with energy dispersive spectroscopy and an optical microscope equipped with image analyzer. Results have shown profound effects of milling conditions (the change in time, speed, etc.) on the behavior of milled powders.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Functionalization of Biomedical Ti6Al4V via In Situ Alloying by Cu during Laser Powder Bed Fusion Manufacturing

The modern medical industry successfully utilizes Laser Powder Bed Fusion (LPBF) to manufacture complex custom implants. Ti6Al4V is one of the most commonly used biocompatible alloys. In surgery practice, infection at the bone-implant interface is one of the key reasons for implant failure. Therefore, advanced implants with biocompatibility and antibacterial properties are required. Modificatio...

full text

Microstructural Evolution of AlCoCrFeNiSi High-Entropy Alloy Powder during Mechanical Alloying and Its Coating Performance

High-entropy alloys (HEAs) are promising structural materials due to their excellent comprehensive performances. The use of mechanically alloyed powders to deposit HEA coatings through atmospheric plasma spraying (APS) is an effective approach that can broaden the application areas of the HEAs. In this paper, a ductility-brittleness AlCoCrFeNiSi system was chosen as an object of study, and the ...

full text

Comparison of Mechanical Behavior and Microstructure of Continuous Cast and Hot Worked CuZn40Al1 Alloy (TECHNICAL NOTE)

The performance of components produced by conventional route of a thermo mechanical process and those produced by continuous casting is interesting from different aspects of economy and technology. The performance of products in their service depends on their properties which are strongly influenced by production routes. In the present work the hardness, tensile and tensile-impact behaviors of ...

full text

Phytoremediation of Cu, Cr and Pb mixtures by Lemna minor.

The present study reports the capacity of the aquatic macrophyte Lemna minor to remediate combinations of Cu(II), Pb(II) and Cr(III) from a simulated natural environment. The effect of these metal mixtures on the growth of L. minor was also investigated using growth rate and biomass inhibition calculations. L. minor was successful in removing Cr and Pb from the water, and it remained an effecti...

full text

Investigation on Mechanical and Electrical Properties of Cu-Ti Nanocomposite Produced by Mechanical Alloying

In this paper, Cu-Ti nanocomposite synthesized via ball milling of copper-titanium powders in 1, 3, and 6 of weight percentage compounds. The vial speed was 350 rpm and ball to powder weight ratio kept at 15:1 under Argon atmosphere, and the time of milling was 90 h. Obtained powders were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD), and dynamic light scattering (DLS)....

full text

Mechanical alloying of Cu and Fe induced by severe plastic deformation of a Cu-Fe composite

A filamentary composite elaborated by cold drawing was processed by High Pressure Torsion (HPT). The nanostructure resulting from this severe plastic deformation (SPD) was investigated thanks to scanning electron microscopy, transmission electron microscopy, X-ray diffraction and 3D atom probe. Although the mutual solubility of Cu and Fe is extremely low at room temperature in equilibrium condi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 23  issue 1

pages  69- 76

publication date 2010-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023