Bayesian Prediction of future observation based on doubly censored data under exponential distribution

author

  • ,
Abstract:

In many experiments about lifetime examination, we will faced on restrictions of time and sample size, which this factors cause that the researcher can’t access to all of data. Therefore, it is valuable to study prediction of unobserved values based on information of available data. in this paper we have studied the prediction of unobserved values in two status of one-sample and two-sample, when the parent distribution is the exponential distribution and imposed restriction is double censoring. in each case the interval prediction by given cover will be obtain. Finally, a numerical example is given to illustrate the procedures.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Non-Bayesian Estimation and Prediction under Weibull Interval Censored Data

In this paper, a one-sample point predictor of the random variable X is studied. X is the occurrence of an event in any successive visits $L_i$ and $R_i$ :i=1,2…,n (interval censoring). Our proposed method is based on finding the expected value of the conditional distribution of X given $L_i$ and $R_i$ (i=1,2…,n). To make the desired prediction, our approach is on the basis of approximating the...

full text

Future record values prediction in exponential distribution

According to the first nth observations of the upper record from exponential distribution, in this article, we can compute maximum likelihood estimation of this distribution parameter. We, then, concentrate on point prediction of the future upper record values in exponential distribution based both on classic and Bayes approaches and second degree and linex loss functions.We, ultimately, de...

full text

Classical and Bayesian Inference in Two Parameter Exponential Distribution with Randomly Censored Data

Abstract. This paper deals with the classical and Bayesian estimation for two parameter exponential distribution having scale and location parameters with randomly censored data. The censoring time is also assumed to follow a two parameter exponential distribution with different scale but same location parameter. The main stress is on the location parameter in this paper. This parameter has not...

full text

Bayesian Prediction Intervals for Future Order Statistics from the Generalized Exponential Distribution

Let X1, X2, ..., Xr be the first r order statistics from a sample of size n from the generalized exponential distribution with shape parameter θ. In this paper, we consider a Bayesian approach to predicting future order statistics based on the observed ordered data. The predictive densities are obtained and used to determine prediction intervals for unobserved order statistics for one-sample ...

full text

Prediction of Times to Failure of Censored Units in Hybrid Censored Samples from Exponential Distribution

In this paper, we discuss different predictors of times to failure of units censored in a hybrid censored sample from exponential distribution. Bayesian and non-Bayesian point predictors for the times to failure of units are obtained. Non-Bayesian prediction Intervals are obtained based on pivotal and highest conditional density methods. Bayesian prediction intervals are also proposed. One real...

full text

Bayesian prediction of future observations from inverse Weibull distribution based on type-II hybrid censored sample

In this paper, we have discussed the Bayesian procedure for the prediction of the future samples from inverse Weibull (IW) distribution under Type-II hybrid censoring scheme. Bayes estimators along with the corresponding highest posterior density (HPD) credible intervals have also been constructed for the parameters of IW distribution. The performance of the Bayes estimators of the model parame...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 17  issue 1

pages  15- 28

publication date 2012-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023