Bayesian Inference for Spatial Beta Generalized Linear Mixed Models

Authors

  • L. Kalhori Nadrabadi 1 Department of Statistics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
  • M. Mohhamadzadeh 1 Department of Statistics, Faculty of Mathematical Sciences, Tarbiat Modares University, Tehran, Islamic Republic of Iran
Abstract:

In some applications, the response variable assumes values in the unit interval. The standard linear regression model is not appropriate for modelling this type of data because the normality assumption is not met. Alternatively, the beta regression model has been introduced to analyze such observations. A beta distribution represents a flexible density family on (0, 1) interval that covers symmetric and skewed families. In this paper, a beta generalized linear mixed model with spatial random effect is proposed emphasizing on small values of the spatial range parameter and small sample sizes. Then some models with both fixed and varying precision parameter and different combinations of priors and sample sizes are discussed. Next, the Bayesian estimation of the model parameters is evaluated in an intensive simulation study. Selected priors improved the Bayesian estimation of the parameters, especially for small sample sizes and small values of range parameter. Finally, an application of the proposed model on data provided by Household Income and Expenditure Survey (HIES) of Tehran city is presented.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Bayesian inference for generalized linear mixed models.

Generalized linear mixed models (GLMMs) continue to grow in popularity due to their ability to directly acknowledge multiple levels of dependency and model different data types. For small sample sizes especially, likelihood-based inference can be unreliable with variance components being particularly difficult to estimate. A Bayesian approach is appealing but has been hampered by the lack of a ...

full text

Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models

In this paper we propose fast approximate methods for computing posterior marginals in spatial generalized linear mixed models. We consider the common geostatistical special case with a high dimensional latent spatial variable and observations at only a few known registration sites. Our methods of inference are deterministic, using no random sampling. We present two methods of approximate infer...

full text

Bayesian Inference for Sparse Generalized Linear Models

We present a framework for efficient, accurate approximate Bayesian inference in generalized linear models (GLMs), based on the expectation propagation (EP) technique. The parameters can be endowed with a factorizing prior distribution, encoding properties such as sparsity or non-negativity. The central role of posterior log-concavity in Bayesian GLMs is emphasized and related to stability issu...

full text

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Approximate Bayesian Inference in Spatial Generalized Linear Mixed Models

In this paper we propose fast approximate methods for computing posterior marginals in spatial generalized linear mixed models. We consider the common geostatistical special case with a high dimensional latent spatial variable and observations at only a few known registration sites. Our methods of inference are deterministic, using no random sampling. We present two methods of approximate infer...

full text

Conditional Inference about Generalized Linear Mixed Models

We propose a method of inference for generalized linear mixed models Ž . GLMM that in many ways resembles the method of least squares. We also show that adequate inference about GLMM can be made based on the conditional likelihood on a subset of the random effects. One of the important features of our methods is that they rely on weak distributional assumptions about the random effects. The met...

full text

Approximate Inference in Generalized Linear Mixed Models

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive o...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 29  issue 2

pages  173- 185

publication date 2018-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023