Bayesian Analysis of Spatial Probit Models in Wheat Waste Management Adoption
Authors
Abstract:
The purpose of this study was to identify factors influencing the adoption of wheat waste management by wheat farmers. The method used in this study using the spatial Probit models and Bayesian model was used to estimate the model. MATLAB software was used in this study. The data of 220 wheat farmers in Khouzestan Province based on random sampling were collected in winter 2016. To calculate Bayesian coefficients the Gibbs sampling and Metropolis–Hastings algorithm were used. A Lagrange Multiplier test for spatial error dependence [LM(err)] and a Lagrange Multiplier test for spatial lag dependence [LM(lag)] to extract the appropriate model were used.The results of both models were statistically significant with 99% probability. Thus, both models can be used in interpreting the results. Based on the results of the estimation of spatial models the variables of participation in extension courses, technical knowledge about management of waste, income, crop’s yield, mechanization level and the spatial autoregressive coefficient had significant role on adoption of waste management.
similar resources
Bayesian Analysis of Multivariate Probit Models
This paper provides a uni ed simulation-based Bayesian and non-Bayesian analysis of correlated binary data using the multivariate probit model. The posterior distribution is simulated by Markov chain Monte Carlo methods, and maximum likelihood estimates are obtained by a Monte Carlo version of the E-M algorithm. Computation of Bayes factors from the simulation output is also considered. The met...
full textSymmetric Bayesian Multinomial Probit Models
Standard Bayesian multinomial probit (MNP) models that are fit using different base categories can give different predictions. Therefore, we propose the symmetric MNP model, which does not make reference to a base category. To achieve this, we employ novel sum-to-zero identifying restrictions on the latent utilities and regression coefficients that define the model. This results in a model whos...
full textA Bayesian Probit Model with Spatial Dependencies
A Bayesian probit model with individual effects that exhibit spatial dependencies is set forth. Since probit models are often used to explain variation in individual choices, these models may well exhibit spatial interaction effects due to the varying spatial location of the decision makers. That is, individuals located at similar points in space may tend to exhibit similar choice behavior. The...
full textCrash Injury Severity Analysis Using Bayesian Ordered Probit Models
Understanding the underlying relationship between crash injury severity and factors such as driver’s characteristics, vehicle type, and roadway conditions is very important for improving traffic safety. Most previous studies on this topic used traditional statistical models such as ordered probit OP , multinomial logit, and nested logit models. This research introduces the Bayesian inference an...
full textEstimating Spatial Probit Models in R
In this article we present the Bayesian estimation of spatial probit models in R and provide an implementation in the package spatialprobit. We show that large probit models can be estimated with sparse matrix representations and Gibbs sampling of a truncated multivariate normal distribution with the precision matrix. We present three examples and point to ways to achieve further performance ga...
full textMy Resources
Journal title
volume 9 issue 1
pages 0- 0
publication date 2019-03-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023