Barium Oxide nanoparticles with robust catalytic, photocatalytic and humidity sensing properties
Authors
Abstract:
Barium Oxide(BaO) nanoparticles were synthesized by simple co-precipitation method and were investigated by the catalytic activity of synthesized barium oxide nanopaticles was enumerated by epoxidation of styrene. The reaction was carried out and the product was obtained at higher efficiency. Particularly, the photocatalytic efficiency was estimated by degradation of Rhodamine-B (RhB) dye using barium oxide nanoparticles under visible light illumination. The degraded dye concentration decreases nearly to zero at 60 minutes of its contact with photocatalyst. The humidity sensing properties of the material was measured by using DC resistance measurement at room temperature that reveals the sensitivity factor of 1926. Barium oxide nanoparticles shows the response and recovery characteristics of 40s and 110s respectively. The dye started to degrade and the concentration of the dye decreases to almost zero at 1 hour of irradiation that was predicted from the degradation rate which was the plot of C/C0. The degradation efficiency was found to be 98% for 1 hour degradation.The evaluation outline on performancebasis revealed that synthesized barium oxide acts as a promising catalyst,photocatalyst and humidity sensing material were reported in detail.
similar resources
Synthesis, Humidity Sensing, Photocatalytic and Antimicrobial Properties of Thin Film Nanoporous PbWO4-WO3 Nanocomposites
A humidity sensor thin film based on nanoporous PbWO4-WO3 composites has been prepared by spin coating technique with different weight ratio of PbWO4 (Pb) and WO3 (WO) (PWWO-01, PWWO-82, PWWO-64, PWWO-46, PWWO-28, PWWO-01) and their humidity sensing properties have also been investigated at different relative humidity (RH) in the range of 5% - 98% at room temperature with dc resistance. It is f...
full textsynthesis, humidity sensing, photocatalytic and antimicrobial properties of thin film nanoporous pbwo4-wo3 nanocomposites
a humidity sensor thin film based on nanoporous pbwo4-wo3 composites has been prepared by spin coating technique with different weight ratio of pbwo4 (pb) and wo3 (wo) (pwwo-01, pwwo-82, pwwo-64, pwwo-46, pwwo-28, pwwo-01) and their humidity sensing properties have also been investigated at different relative humidity (rh) in the range of 5% - 98% at room temperature with dc resistance. it is f...
full textHumidity Sensing Properties of Paper Substrates and Their Passivation with ZnO Nanoparticles for Sensor Applications
In this paper, we investigated the effect of humidity on paper substrates and propose a simple and low-cost method for their passivation using ZnO nanoparticles. To this end, we built paper-based microdevices based on an interdigitated electrode (IDE) configuration by means of a mask-less laser patterning method on simple commercial printing papers. Initial resistive measurements indicate that ...
full textSynthesis, characterization and photocatalytic properties of Iron oxide nanoparticles synthesized by sol-gel autocombustion with ultrasonic irradiation
Iron oxide (Fe2O3) nanoparticles were prepared by combination of sol-gel autocombustion and ultrasonic irradiation. The XRD pattern reveals that the crystallite size of sample is 36.7 nm and the phase identification shows hematite, syn has been crystalized. The morphology of the sample investigated by FESEM showed that particle size of the sample was about 76 nm. The optic...
full textAn All Oxide-Based Imperceptible Thin-Film Transistor with Humidity Sensing Properties
We have examined the effects of oxygen content and thickness in sputtered InSnO (ITO) electrodes, especially for the application of imperceptible amorphous-InGaZnO (a-IGZO) thin-film transistors (TFTs) in humidity sensors. The imperceptible a-IGZO TFT with 50-nm ITO electrodes deposited at Ar:O₂ = 29:0.3 exhibited good electrical performances with Vth of -0.23 V, SS of 0.34 V/dec, µFE of 7.86 c...
full textSynthesis of CuO Nanoparticles and Study on their Catalytic Properties
In this research, CuO spherical-like nanoparticles were synthesized using the planetary ball mill method. The structure, particle size and morphology of the resulting CuO nanoparticles were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy) and SAXS (small-angle X-ray scattering) methods. The results of this investigation showed ...
full textMy Resources
Journal title
volume 10 issue 1
pages 167- 176
publication date 2020-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023