Band bending engineering in p-i-n gate all around Carbon nanotube field effect transistors by multi-segment gate

Authors

  • Ali Naderi Electrical and Computer Engineering Faculty, Kermanshah University of Technology, Kermanshah, Iran.
  • Behrooz Abdi Tahne Young Researchers and Elite Club, Kermanshah Branch, Islamic Azad University, Kermanshah, Iran.
Abstract:

The p-i-n carbon nanotube (CNT) devices suffer from low ON/OFF current ratio and small saturation current. In this paper by band bending engineering, we improved the device performance of p-i-n CNT field effect transistors (CNTFET). A triple gate all around structure is proposed to manage the carrier transport along the channel. We called this structure multi-segment gate (MSG) CNTFET. Band to band tunneling (B-B tunneling) is a dominant transport mechanism in p-i-n structures which is more controlled here by band bending engineering. Gate metal at source side causes more bands bending at channel to source interface and the gate metal at drain side acts as a filter which reduces the leakage current. Results demonstrate that by parameter engineering of gate metal, the proposed structure improves the saturation current, leakage current, current ratio, subthreshold swing, breakdown voltage and cut-off frequency in comparison with conventional structure. Also, to obtain the optimum parameters, design considerations has been done in terms of difference in workfunctions and change in the length of each part of gates. Simulations and comparisons have been performed using none equilibrium Green's function and self-consistent solution between Poisson and Schrodinger equations.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Gate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)

In this article, a new structure is presented for MOS (Metal Oxide Semiconductor)-like junctionless carbon nanotube field effect transistor (MOS-like J-CNTFET), in which dual material gate with different work-functions are used. In the aforementioned structure, the size of the gates near the source and the drain are 14 and 6 nm, respectively, and the work-functions are equal and 0.5 eV less tha...

full text

Gate structural engineering of MOS-like junctionless Carbon nanotube field effect transistor (MOS-like J-CNTFET)

In this article, a new structure is presented for MOS (Metal Oxide Semiconductor)-like junctionless carbon nanotube field effect transistor (MOS-like J-CNTFET), in which dual material gate with different work-functions are used. In the aforementioned structure, the size of the gates near the source and the drain are 14 and 6 nm, respectively, and the work-functions are equal and 0.5 eV less tha...

full text

Band Engineering of Partially Exposed Carbon Nanotube Field - Effect Transistors

Submitted for the MAR05 Meeting of The American Physical Society Band Engineering of Partially Exposed Carbon Nanotube FieldEffect Transistors XIAOLEI LIU, ZHICHENG LUO, SONG HAN, TAO TANG, DAIHUA ZHANG, CHONGWU ZHOU, University of Southern California — We present a new approach to engineer the band structure of carbon nanotube fieldeffect transistors via selected area chemical gating. By expos...

full text

Carbon nanotube complementary wrap-gate transistors.

Among the challenges hindering the integration of carbon nanotube (CNT) transistors in digital technology are the lack of a scalable self-aligned gate and complementary n- and p-type devices. We report CNT transistors with self-aligned gates scaled down to 20 nm in the ideal gate-all-around geometry. Uniformity of the gate wrapping the nanotube channels is confirmed, and the process is shown no...

full text

Band-to-band tunneling in carbon nanotube field-effect transistors.

A detailed study on the mechanism of band-to-band tunneling in carbon nanotube field-effect transistors (CNFETs) is presented. Through a dual-gated CNFET structure tunneling currents from the valence into the conduction band and vice versa can be enabled or disabled by changing the gate potential. Different from a conventional device where the Fermi distribution ultimately limits the gate volta...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 4

pages  341- 350

publication date 2017-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023