Balanced clusters and diffusion process in signed networks
Authors
Abstract:
In this paper we study the topology effects on diffusion process in signed networks. Considering a simple threshold model for diffusion process, it is extended to signed networks and some appropriate definitions are proposed. This model is a basic model that could be extended and applied in analyzing dynamics of many real phenomena such as opinion forming or innovation diffusion in social networks. Studying the model declares that highly balanced dense clusters act as obstacles to diffusion process. This fact is verified by numerical simulations and it is declared that balanced dense clusters limit perturbation diffusion and the rest time. In other words the systems with more compatible communities and balanced clusters act more robust against perturbations. Moreover, the final state majority would be the same of more balanced cluster initially. These structural properties could be useful in analyzing and controlling diffusion process in systems.
similar resources
Spectral Analysis of k-Balanced Signed Graphs
Previous studies on social networks are often focused on networks with only positive relations between individual nodes. As a significant extension, we conduct the spectral analysis on graphs with both positive and negative edges. Specifically, we investigate the impacts of introducing negative edges and examine patterns in the spectral space of the graph’s adjacency matrix. Our theoretical res...
full textPlanar Molecular Dynamics Simulation of Au Clusters in Pushing Process
Based on the fact the manipulation of fine nanoclusters calls for more precise modeling, the aim of this paper is to conduct an atomistic investigation for interaction analysis of particle-substrate system for pushing and positioning purposes. In the present research, 2D molecular dynamics simulations have been used to investigate such behaviors. Performing the planar simulations can provide a ...
full textInformation Filtering via Balanced Diffusion on Bipartite Networks
Recent decade has witnessed the increasing popularity of recommender systems, which help users acquire relevant commodities and services from overwhelming resources on Internet. Some simple physical diffusion processes have been used to design effective recommendation algorithms for user-object bipartite networks, typically mass diffusion (MD) and heat conduction (HC) algorithms which have diff...
full textDiffusion noise of fractal networks and percolation clusters.
Diffusion noise and Nyquist noise on fractal lattices and percolation clusters are discussed in the highand low-frequency limits. Diffusion noise can also be considered as a sort of "1/f noise. " Even for system sizes much larger than the correlation length, the fractal structure of the percolation clusters reveals itself at sufficiently high frequencies through the anomalous frequency dependen...
full textSemantic Word Clusters Using Signed Spectral Clustering
Vector space representations of words capture many aspects of word similarity, but such methods tend to produce vector spaces in which antonyms (as well as synonyms) are close to each other. For spectral clustering using such word embeddings, words are points in a vector space where synonyms are linked with positive weights, while antonyms are linked with negative weights. We present a new sign...
full textRecommendations in Signed Social Networks
Recommender systems play a crucial role in mitigating the information overload problem in social media by suggesting relevant information to users. The popularity of pervasively available social activities for social media users has encouraged a large body of literature on exploiting social networks for recommendation. The vast majority of these systems focus on unsigned social networks (or soc...
full textMy Resources
Journal title
volume 7 issue 1
pages 104- 117
publication date 2014-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023