Automatic Colorization of Grayscale Images Using Generative Adversarial Networks
Authors
Abstract:
Automatic colorization of gray scale images poses a unique challenge in Information Retrieval. The goal of this field is to colorize images which have lost some color channels (such as the RGB channels or the AB channels in the LAB color space) while only having the brightness channel available, which is usually the case in a vast array of old photos and portraits. Having the ability to colorize such images would give us a multitude of possibilities ranging from colorizing old and historic images to providing alternate colorizations for real images or artistic creations. Be that as it may, the progress in this field is trivial compared to what the professionals are able to do using special-purpose applications such as Photoshop or GIMP. On the other hand, losing the information stored in color channels and having only access to the primary brightness channel, makes this problem a unique challenge, since the main aim of automatic colorization is not to find the image’s “real” color but to colorize it in such a way that makes it “seem real” as the original color information is lost forever and the only way to colorize it, is to provide a somewhat “proper” estimation. In this research we propose a model to automatically colorize gray human portraits. We start by reviewing the methods used for the task of image colorization and provide an explanation as to why most of them collapse to a situation known as “Averaging”. To counteract this effect, we design our end-to-end model with two separate deep neural networks forming a Generative Adversarial Network (GAN), one to colorize the images and the other to evaluate the colorization of the first network and guide it towards the proper distribution. The results show improvements over other proposed methods in this field especially in the case of colorizing human portraits along faster train times. This method not only works on real human portraits but also on non-human and artistic portraits that can be leveraged to colorize hand-drawn images some of which may take minutes up to hours by hand.
similar resources
Automatic Colorization with Deep Convolutional Generative Adversarial Networks
We attempt to use DCGANs (deep convolutional generative adversarial nets) to tackle the automatic colorization of black and white photos to combat the tendency for vanilla neural nets to ”average out” the results. We construct a small feed-forward convolutional neural network as a baseline colorization system. We train the baseline model on the CIFAR-10 dataset with a per-pixel Euclidean loss f...
full textImage Colorization with Generative Adversarial Networks
Over the last decade, the process of automatic colorization had been studied thoroughly due to its vast application such as colorization of grayscale images and restoration of aged and/or degraded images. This problem is highly ill-posed due to the extremely large degrees of freedom during the assignment of color information. Many of the recent developments in automatic colorization involved im...
full textUnsupervised Diverse Colorization via Generative Adversarial Networks
Colorization of grayscale images is a hot topic in computer vision. Previous research mainly focuses on producing a color image to recover the original one in a supervised learning fashion. However, since many colors share the same gray value, an input grayscale image could be diversely colorized while maintaining its reality. In this paper, we design a novel solution for unsupervised diverse c...
full textImprovement of generative adversarial networks for automatic text-to-image generation
This research is related to the use of deep learning tools and image processing technology in the automatic generation of images from text. Previous researches have used one sentence to produce images. In this research, a memory-based hierarchical model is presented that uses three different descriptions that are presented in the form of sentences to produce and improve the image. The proposed ...
full textColorization of Grayscale Images: an Overview
An efficient colorization scheme for images based on prioritized source propagation is proposed in this work. A user first scribbles colors on a set of source pixels in an image. The proposed algorithm then propagates those colors to the other non-source pixels and the subsequent frames. Specifically, the proposed algorithm identifies the non-source pixel with the highest priority, which can be...
full textAutomated Colorization of Grayscale Images Using Texture Descriptors
A novel example-based process for automated colorization of grayscale images using texture descriptors (ACTD) without any human intervention is proposed. By analyzing a set of sample color images, coherent regions of homogeneous textures are extracted. A multi-channel filtering technique is used for texture-based image segmentation. For each area of interest, state of the art texture descriptor...
full textMy Resources
Journal title
volume 16 issue 1
pages 57- 74
publication date 2019-06
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023