AUTOMATED SIZING OF TRUSS STRUCTURES USING A COMPUTATIONALLY IMPROVED SOPT ALGORITHM
Authors
Abstract:
The present study attempts to apply an efficient yet simple optimization (SOPT) algorithm to optimum design of truss structures under stress and displacement constraints. The computational efficiency of the technique is improved through avoiding unnecessary analyses during the course of optimization using the so-called upper bound strategy (UBS). The efficiency of the UBS integrated SOPT algorithm is evaluated through benchmark sizing optimization problems of truss structures and the numerical results are reported. A comparison of the numerical results attained using the SOPT algorithm with those of modern metaheuristic techniques demonstrates that the employed algorithm is capable of locating promising designs with considerably less computational effort.
similar resources
SIZING OPTIMIZATION OF TRUSS STRUCTURES WITH NEWTON META-HEURISTIC ALGORITHM
This study is devoted to discrete sizing optimization of truss structures employing an efficient discrete evolutionary meta-heuristic algorithm which uses the Newton gradient-based method as its updating scheme and it is named here as Newton Meta-heuristic Algorithm (NMA). In order to enable the NMA population-based meta-heuristic to effectively explore the discrete design space, a term contain...
full textSWITCHING TEAMS ALGORITHM FOR SIZING OPTIMIZATION OF TRUSS STRUCTURES
Meta-heuristics have received increasing attention in recent years. The present article introduces a novel method in such a class that distinguishes a number of artificial search agents called players within two teams. At each iteration, the active player concerns some other players in both teams to construct its special movements and to get more score. At the end of some iterations (like quart...
full textDISCRETE AND CONTINUOUS SIZING OPTIMIZATION OF LARGE-SCALE TRUSS STRUCTURES USING DE-MEDT ALGORITHM
Design optimization of structures with discrete and continuous search spaces is a complex optimization problem with lots of local optima. Metaheuristic optimization algorithms, due to not requiring gradient information of the objective function, are efficient tools for solving these problems at a reasonable computational time. In this paper, the Doppler Effect-Mean Euclidian Distance Threshold ...
full textHeat Transfer Search Algorithm for Sizing Optimization of Truss Structures
Heat transfer search (HTS) is a novel metaheuristic optimization algorithm that simulates the laws of thermodynamics and heat transfer. In this study, the HTS algorithm is adapted to truss structure optimization. Sizing optimization searches for the minimum weight of a structure subject to stress and displacement constraints. Three truss structures often taken as benchmarks in the optimization ...
full textModified Sine-Cosine Algorithm for Sizing Optimization of Truss Structures with Discrete Design Variables
This paper proposes a modified sine cosine algorithm (MSCA) for discrete sizing optimization of truss structures. The original sine cosine algorithm (SCA) is a population-based metaheuristic that fluctuates the search agents about the best solution based on sine and cosine functions. The efficiency of the original SCA in solving standard optimization problems of well-known mathematical function...
full textHybrid Improved Dolphin Echolocation and Ant Colony Optimization for Optimal Discrete Sizing of Truss Structures
This paper presents a robust hybrid improved dolphin echolocation and ant colony optimization algorithm (IDEACO) for optimization of truss structures with discrete sizing variables. The dolphin echolocation (DE) is inspired by the navigation and hunting behavior of dolphins. An improved version of dolphin echolocation (IDE), as the main engine, is proposed and uses the positive attributes of an...
full textMy Resources
Journal title
volume 3 issue 2
pages 209- 221
publication date 2013-06
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023