Auto combustion synthesis using grapefruit extract: photocatalyst and magnetic MgFe2O4-PbS nanocomposites
Authors
Abstract:
Magnesium ferrite (MgFe2O4) as a core magnetic nanostructure was synthesized via auto combustion method by using grapefruit extract as a biocompatible and cost-effective material. Then flower and star-like PbS were synthesized using thioglycolic acid as a sulfur source without using any chemical template. After that for preparation of magnetic and photocatalyst MgFe2O4-PbS nanocomposites, lead sulfide were coated on the magnetic core by hydrothermal procedure. Morphology of the prepared products was estimated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), also X-ray diffraction (XRD) pattern show purity and phase of the product. Fourier transforms infrared (FT-IR) spectroscopy show vibration modes of the bonds. Vibrating sample magnetometer (VSM) illustrated that magnesium ferrite nanoparticles have a soft magnetic behaviour with 18 emu/g magnetization and coercivity about 90Oe. The photocatalytic behaviour of MgFe2O4-PbS nanocomposites were examined using the degradation of two various azo dyes acid brown and acid violet under visible light irradiation. This magnetic photocatalyst can easily separate from water with an external magnetic field and can be used under solar irradiation.
similar resources
synthesis of amido alkylnaphthols using nano-magnetic particles and surfactants
we used dbsa and nano-magnetic for the synthesis of amido alkylnaphtols.
15 صفحه اولSynthesis of CeVO4 nanoparticles using sol-gel auto combustion method and their antifungal activity
Cerium orthovanadate nanoparticles (CeVO4 NPs) were fabricated using urea-assisted facile sol-gel auto combustion method. X-ray diffraction (XRD) pattern revealed the crystal planes and size of synthesized CeVO4 NPs. The morphological shape and the crystalline nature of the NPs were examined by field emission scanning electron microscopy (FESEM). Energy-dispersive X-ray spectroscopy (EDX) affir...
full textAuto - combustion synthesis of perovskite - type oxides
A versatile one-pot auto-combustion method for the synthesis of powders of iron-doped strontium titanate, SrTi1-xFexO3-δ, has been developed. The synthesis is optimised by the combined use of EDTA and citric acid as chelating agents, and an appropriate balance between fuel and oxidising elements in the reaction mixture. The method produces immediately an almost phase-pure perovskite oxide powde...
full textPhase Formation, Microstructure and Magnetic Properties of BiFeO3 Synthesized by Sol-Gel Auto Combustion Method Using Different Solvents
In this research nano particles of bismuth ferrite (BiFeO3) were synthesized by sol-gel auto-combustion route. The effect of water and ethylene glycol solvents were studied on phase constituents, magnetic properties and microstructure of the bismuth ferrite by X-ray diffraction (XRD), scanning electron microscope (SEM) and vibration sample magnetometer (VSM) techniques. XRD resul...
full textMicrostructure and Magnetic Properties of Sr2Co1.7Mg0.3Fe11.2 Hexaferrite Synthesized by Auto-Combustion Sol-Gel Method
A single phased Y-type hexagonal ferrite Sr2Co1.7Mg0.3Fe11.2Sn0.4Zn0.4O22 was synthesized by the sol–gel auto combustion method. Structural and magnetic properties of this composition of Y-type hexagonal ferrite have been investigated. The X-ray diffraction (XRD) patterns confirm single phase Y-type hexagonal ferrite and various parameters such as lattice constants and cell volume have been cal...
full textSynthesis and characterization of nanocrystalline spinel Zinc ferrite prepared by sol-gel auto-combustion technique
Sol–gel auto-combustion is a unique combination of the combustion and the chemical gelation processes. In this work, nanosize (d) powders with compositions of ZnFe2O4 were synthesized by sol–gel combustion method. The puffy, porous brown powders as-combusted was calcined at the temperature of 750–1000◦C for 4 h. These powders are characterized by X-ray diffraction and scanning electron microsco...
full textMy Resources
Journal title
volume 10 issue 1
pages 83- 91
publication date 2020-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023