Attractor Based Analysis of Centrally Cracked Plate Subjected to Chaotic Excitation
Authors
Abstract:
The presence of part-through cracks with limited length is one of the prevalent defects in the plate structures. Due to the slight effect of this type of damages on the frequency response of the plates, conventional vibration-based damage assessment could be a challenging task. In this study for the first time, a recently developed state-space method which is based on the chaotic excitation is implemented and nonlinear prediction error (NPE) is proposed as a geometrical feature to analyze the chaotic attractor of a centrally cracked plate. For this purpose using line spring method (LSM) a nonlinear multi-degree of freedom model of part through cracked rectangular plate is developed. Tuning of Lorenz type chaotic signal is conducted by crossing of the Lyapunov exponents’ spectrums of nonlinear model of the plate and chaotic signal and in the next step by varying the tuning parameter to find a span in which a tangible sensitivity in the NPE could be observable. Damage characteristics such as length, depth and angle of crack are altered and variation of proposed feature is scrutinized. Results show that by implementation of the tuned chaotic signal, tangible sensitivity and also near to monotonic behavior of NPE versus damage intensity are achievable. Finally, the superiority of the proposed method is examined through the comparison with the frequency-based method.
similar resources
Stochastic analysis of two adjacent structures subjected to structural pounding under earthquake excitation
Seismic pounding occurs as a result of lateral vibration and insufficient separation distance between two adjacent structures during earthquake excitation. This research aims to evaluate the stochastic behavior of adjacent structures with equal heights under earthquake-induced pounding. For this purpose, many stochastic analyses through comprehensive numerical simulations are carried out. About...
full textChaotic Response and Bifurcation Analysis of a Timoshenko Beam with Backlash Support Subjected to Moving Masses
A simply supported Timoshenko beam with an intermediate backlash is considered. The beam equations of motion are obtained based on the Timoshenko beam theory by including the dynamic effect of a moving mass travelling along the vibrating path. The equations of motion are discretized by using the assumed modes technique and solved using the Runge–Kutta method. The analysis methods employed in...
full textstudy of hash functions based on chaotic maps
توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...
Dynamics of nonlinear rectangular plates subjected to an orbiting mass based on shear deformation plate theory
In this paper, transverse and longitudinal vibration of nonlinear plate under exciting of orbiting mass is considered based on first-order shear deformation theory. The nonlinear governing equation of motion are discretized by the finite element method in combination with Newmark’s time integration scheme under von Karman strain-displacement assumptions. For validation of method and formulation...
full textDynamic Behavior Analysis of a Geometrically Nonlinear Plate Subjected to a Moving Load
In this paper, the nonlinear dynamical behavior of an isotropic rectangular plate, simply supported on all edges under influence of a moving mass and as well as an equivalent concentrated force is studied. The governing nonlinear coupled PDEs of motion are derived by energy method using Hamilton’s principle based on the large deflection theory in conjuncture with the von-Karman strain-displacem...
full textFailure analysis of a cracked plate based on endochronic plastic theory coupled with damage
An anisotropic model of damage mechanics for ductile fracture incorporating the endochronic theory of plasticity is presented in order to take into account material deterioration during plastic deformation. An alternative form of endochronic (internal time) theory which is actually an elasto-plastic damage theory with isotropicnonlinear kinematic hardening is developed for ease of numerical com...
full textMy Resources
Journal title
volume 51 issue 1
pages 199- 212
publication date 2020-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023