Associated Graphs of Modules Over Commutative Rings
Authors
Abstract:
Let $R$ be a commutative ring with identity and let $M$ be an $R$-module. In this paper we introduce a new graph associated to modules over commutative rings. We study the relationship between the algebraic properties of modules and their associated graphs. A topological characterization for the completeness of the special subgraphs is presented. Also modules whose associated graph is complete, tree or complete bipartite are studied and several characterizations are given.
similar resources
ANNIHILATING SUBMODULE GRAPHS FOR MODULES OVER COMMUTATIVE RINGS
In this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. Weobserve that over a commutative ring $R$, $Bbb{AG}_*(_RM)$ isconnected and diam$Bbb{AG}_*(_RM)leq 3$. Moreover, if $Bbb{AG}_*(_RM)$ contains a cycle, then $mbox{gr}Bbb{AG}_*(_RM)leq 4$. Also for an $R$-module $M$ with$Bbb{A}_*(M)neq S(M)setminus {0}$, $...
full textNONNIL-NOETHERIAN MODULES OVER COMMUTATIVE RINGS
In this paper we introduce a new class of modules which is closely related to the class of Noetherian modules. Let $R$ be a commutative ring with identity and let $M$ be an $R$-module such that $Nil(M)$ is a divided prime submodule of $M$. $M$ is called a Nonnil-Noetherian $R$-module if every nonnil submodule of $M$ is finitely generated. We prove that many of the properties of Noetherian modul...
full textannihilating submodule graphs for modules over commutative rings
in this article, we give several generalizations of the concept of annihilating ideal graph over a commutative ring with identity to modules. weobserve that over a commutative ring $r$, $bbb{ag}_*(_rm)$ isconnected and diam$bbb{ag}_*(_rm)leq 3$. moreover, if $bbb{ag}_*(_rm)$ contains a cycle, then $mbox{gr}bbb{ag}_*(_rm)leq 4$. also for an $r$-module $m$ with$bbb{a}_*(m)neq s(m)setminus {0}$, $...
full textJónsson Modules over Commutative Rings
Let M be an infinite unitary module over a commutative ring R with identity. Then M is called a Jónsson module provided every proper submodule of M has smaller cardinality than M. These modules have been studied by several algebraists, including Robert Gilmer, Bill Heinzer, and the author. In this note, we recall the major results on Jónsson modules to bring the reader up to speed on current re...
full textAnnihilating Submodule Graphs for Modules over Commutative Rings
In this article, we give several generalizations of the concept of annihilating an ideal graph over a commutative ring with identity to modules. We observe that, over a commutative ring, R, AG∗(RM) is connected, and diamAG∗(RM) ≤ 3. Moreover, if AG∗(RM) contains a cycle, then grAG∗(RM) ≤ 4. Also for an R-module M with A∗(M) ̸= S(M) \ {0}, A∗(M) = ∅, if and only if M is a uniform module, and ann(...
full textINDEPENDENT SETS OF SOME GRAPHS ASSOCIATED TO COMMUTATIVE RINGS
Let $G=(V,E)$ be a simple graph. A set $Ssubseteq V$ isindependent set of $G$, if no two vertices of $S$ are adjacent.The independence number $alpha(G)$ is the size of a maximumindependent set in the graph. In this paper we study and characterize the independent sets ofthe zero-divisor graph $Gamma(R)$ and ideal-based zero-divisor graph $Gamma_I(R)$of a commutative ring $R$.
full textMy Resources
Journal title
volume 10 issue None
pages 45- 58
publication date 2015-04
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023