Artificial Neural Network Based Prediction Hardness of Al2024-Multiwall Carbon Nanotube Composite Prepared by Mechanical Alloying

Authors

  • Gholam Reza Khayati Department of Materials Science and Engineering, Shahid Bahonar University of Kerman
  • Mehrdad Mahdavi Department of Materials Science and Engineering, Shahid Bahonar University of Kerman
Abstract:

In this study, artificial neural network was used to predict the microhardness of Al2024-multiwall carbon nanotube(MWCNT) composite prepared by mechanical alloying. Accordingly, the operational condition, i.e., the amount of reinforcement, ball to powder weight ratio, compaction pressure, milling time, time and temperature of sintering as well as vial speed were selected as independent input and the mean micro-hardness of composites was selected as model output. To train the model, a Multilayer perceptron neural network structure and feed-forward back propagation algorithm has been employed. After testing many different ANN architectures an optimal structure of the model i.e. 7-25-1 is obtained. The predicted results, with a correlation relation between 0.982 and 0.9952 and 3.26% mean absolute error, show a very good agreement with the experimental values. Furthermore, the ANN model was subjected to a sensitivity analysis and determined the significant inputs affecting hardness of the samples.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Hardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm

Among artificial intelligence approaches, artificial neural networks (ANNs) and genetic algorithm (GA) are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN) and genetic algorithm (GA) were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall car...

full text

PREDICTION OF BIAXIAL BENDING BEHAVIOR OF STEEL-CONCRETE COMPOSITE BEAM-COLUMNS BY ARTIFICIAL NEURAL NETWORK

In this study, the complex behavior of steel encased reinforced concrete (SRC) composite beam–columns in biaxial bending is predicted by multilayer perceptron neural network. For this purpose, the previously proposed nonlinear analysis model, mixed beam-column formulation, is verified with biaxial bending test results. Then a large set of benchmark frames is provided and P-Mx-My triaxial ...

full text

Optimization of micro hardness of nanostructure Cu-Cr-Zr alloys prepared by the mechanical alloying using artificial neural networks and genetic algorithm

Cu–Cr-Zr alloys had wide applications in engineering applications such as electrical and welding industrial especially for their high strength, high electrical as well as acceptable thermal conductivities and melting points. It was possible to prepare the nano-structure of these age hardenable alloys using mechanical alloying method as a cheap and mass production technique to prepare the non-eq...

full text

Nanofluid Thermal Conductivity Prediction Model Based on Artificial Neural Network

Heat transfer fluids have inherently low thermal conductivity that greatly limits the heat exchange efficiency. While the effectiveness of extending surfaces and redesigning heat exchange equipments to increase the heat transfer rate has reached a limit, many research activities have been carried out attempting to improve the thermal transport properties of the fluids by adding more thermally c...

full text

Hydrogen Desorption Properties of Nanocrystalline MgH2-10 wt.% ZrB2 Composite Prepared by Mechanical Alloying

Storage of hydrogen is one of the key challenges in developing hydrogen economy. Magnesium hydride (MgH2) is an attractive candidate for solid-state hydrogen storage for on-board applications. In this study, 10 wt.% ZrB2 was co-milled with magnesium hydride at different milling times to produce nanocrystalline composite powder. The effect of milling time and additive on the hydrogen desorption...

full text

Water-soluble multiwall-carbon-nanotube-polythiophene composite for bilayer photovoltaics

A water-soluble acid oxidized multiwall carbon nanotube o-MWCNTs -polythiophene composite for bilayer photovoltaics is reported. Discrete heterojunction photovoltaic cells utilizing this nanocomposite material as the donor layer exhibit a 20% increase in fill factor and commensurate increase in power conversion efficiency as compared to cells without o-MWCNTs. Crucially o-MWCNTs are incorporate...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 29  issue 12

pages  1726- 1733

publication date 2016-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023