Arrow theorems in the fuzzy setting
Authors
Abstract:
Throughout this paper, our main idea is to analyze the Arrovian approach in a fuzzy context, paying attention to different extensions of the classical Arrow's model arising in mathematical Social Choice to aggregate preferences that the agents define on a set of alternatives. There is a wide set of extensions. Some of them give rise to an impossibility theorem as in the Arrovian classical model. But others lead to possibility results. We explore the main grounds that lead to impossibility or possibility. In this analysis, representative examples arise. One of them corresponds to an impossibility result, and the other ones allow the aggregation of fuzzy individual preferences to an individual one. We introduce new techniques for the proofs, specially for the one that leads to impossibility.
similar resources
Arrow type impossibility theorems over median algebras
We characterize trees as median algebras and semilattices by relaxing conservativeness. Moreover, we describe median homomorphisms between products of median algebras and show that Arrow type impossibility theorems for mappings from a product A1 ˆ ̈ ̈ ̈ ˆ An of median algebras to a median algebra B are possible if and only if B is a tree, when thought of as an ordered structure.
full textArrow Index of a Fuzzy Choice Function
The Arrow index of a fuzzy choice function C is a measure of the degree to which C satisfies the Fuzzy Arrow Axiom, a fuzzy version of the classical Arrow Axiom. The main result of this paper shows that A(C) characterizes the degree to which C is full rational. We also obtain a method for computing A(C). The Arrow index allows to rank the fuzzy choice functions with respect to their rationality...
full textCOMMON FIXED POINT THEOREMS IN MODIFIED INTUITIONISTIC FUZZY METRIC SPACES
In this paper, we introduce a new class of implicit functions and also common property (E.A) in modified intuitionistic fuzzy metric spaces and utilize the same to prove some common fixed point theorems in modified intuitionistic fuzzy metric spaces besides discussing related results and illustrative examples. We are not aware of any paper dealing with such implicit functions in modified intuit...
full textSome New Fixed Point Theorems in Fuzzy Metric Spaces
Motivated by Samet et al. [Nonlinear Anal., 75(4) (2012), 2154-2165], we introduce the notions of $alpha$-$phi$-fuzzy contractive mapping and $beta$-$psi$-fuzzy contractive mapping and prove two theorems which ensure the existence and uniqueness of a fixed point for these two types of mappings. The presented theorems extend, generalize and improve the corresponding results given in the literature.
full textON CONVERGENCE THEOREMS FOR FUZZY HENSTOCK INTEGRALS
The main purpose of this paper is to establish different types of convergence theorems for fuzzy Henstock integrable functions, introduced by Wu and Gong cite{wu:hiff}. In fact, we have proved fuzzy uniform convergence theorem, convergence theorem for fuzzy uniform Henstock integrable functions and fuzzy monotone convergence theorem. Finally, a necessary and sufficient condition under which th...
full textExtension Theorems for Paraboloids in the Finite Field Setting
In this paper we study the L − L boundedness of the extension operators associated with paraboloids in Fq , where Fq is a finite field of q elements. In even dimensions d ≥ 4, we estimate the number of additive quadruples in the subset E of the paraboloids, that is the number of quadruples (x, y, z, w) ∈ E with x + y = z + w. As a result, in higher even dimensions, we obtain the sharp range of ...
full textMy Resources
Journal title
volume 17 issue 5
pages 29- 41
publication date 2020-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023