Arens regularity of inverse semigroup algebras
Authors
Abstract:
We present a characterization of Arens regular semigroup algebras $ell^1(S)$, for a large class of semigroups. Mainly, we show that if the set of idempotents of an inverse semigroup $S$ is finite, then $ell^1(S)$ is Arens regular if and only if $S$ is finite.
similar resources
arens regularity of inverse semigroup algebras
we present a characterization of arens regular semigroup algebras $ell^1(s)$, for a large class of semigroups. mainly, we show that if the set of idempotents of an inverse semigroup $s$ is finite, then $ell^1(s)$ is arens regular if and only if $s$ is finite.
full textModule cohomology group of inverse semigroup algebras
Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...
full textArens regularity of triangular Banach algebras related to homomorphisms
In this paper we first introduce a new multiplication on triangular Banach algebras. Then we study their Arens regularity as well as their topological centers . In this paper we first introduce a new multiplication on triangular Banach algebras. Then we study their Arens regularity as well as their topological centers . In this paper we first introduce a new multiplication on triangular Banach ...
full textArens Regularity and Weak Amenability of Certain Matrix Algebras
Motivated by an Arens regularity problem, we introduce the concepts of matrix Banach space and matrix Banach algebra. The notion of matrix normed space in the sense of Ruan is a special case of our matrix normed system. A matrix Banach algebra is a matrix Banach space with a completely contractive multiplication. We study the structure of matrix Banach spaces and matrix Banach algebras. Then we...
full textArens-regularity of algebras arising from tensor norms
We investigate the Arens products on the biduals of certain algebras of operators on nonreflexive Banach spaces. To be precise, we study the α-nuclear operators, where α is a tensor norm. This includes the approximable and nuclear operators, and we use these, together with the 2-nuclear operators, as motivating examples. The structure of the two topological centres of the bidual are studied, an...
full textmodule cohomology group of inverse semigroup algebras
let $s$ be an inverse semigroup and let $e$ be its subsemigroup of idempotents. in this paper we define the $n$-th module cohomology group of banach algebras and show that the first module cohomology group $hh^1_{ell^1(e)}(ell^1(s),ell^1(s)^{(n)})$ is zero, for every odd $ninmathbb{n}$. next, for a clifford semigroup $s$ we show that $hh^2_{ell^1(e)}(ell^1(s),ell^1(s)^{(n)})$ is a banach space,...
full textMy Resources
Journal title
volume 40 issue 6
pages 1527- 1538
publication date 2014-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023