Approximation of a generalized Euler-Lagrange type additive mapping on Lie $C^{ast}$-algebras

Authors

  • Prasanna K. Sahoo Department of Mathematics, University of Louisville, Louisville, KY 40292, USA
  • Zhihua Wang School of Science, Hubei University of Technology, Wuhan, Hubei 430068, P.R. China
Abstract:

Using fixed point method, we prove some new stability results for Lie $(alpha,beta,gamma)$-derivations and Lie $C^{ast}$-algebra homomorphisms on Lie $C^{ast}$-algebras associated with the Euler-Lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{align*} where $r_{1},ldots,r_{n}in {mathbb{R}}$ are given and $r_{i},r_{j}neq 0$ for some $1leq i< jleq n$.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

approximation of a generalized euler-lagrange type additive mapping on lie $c^{ast}$-algebras

using fixed point method, we prove some new stability results for lie $(alpha,beta,gamma)$-derivations and lie $c^{ast}$-algebra homomorphisms on lie $c^{ast}$-algebras associated with the euler-lagrange type additive functional equation begin{align*} sum^{n}_{j=1}f{bigg(-r_{j}x_{j}+sum_{1leq i leq n, ineq j}r_{i}x_{i}bigg)}+2sum^{n}_{i=1}r_{i}f(x_{i})=nf{bigg(sum^{n}_{i=1}r_{i}x_{i}bigg)} end{...

full text

Stability of a Generalized Euler-lagrange Type Additive Mapping and Homomorphisms in C∗-algebras Ii

The stability problem of functional equations was originated from a question of Ulam [66] concerning the stability of group homomorphisms: Let (G1, .) be a group and let (G2, ∗) be a metric group with the metric d(., .). Given ε > 0, does there exist a δ > 0, such that if a mapping h : G1 → G2 satisfies the inequality d(h(x1.x2), h(x1) ∗ h(x2)) < δ for all x1, x2 ∈ G1, then there exists a homom...

full text

Stability of a Generalized Euler-Lagrange Type Additive Mapping and Homomorphisms in C-Algebras

Let X,Y be Banach modules over a C∗-algebra and let r1, . . . , rn ∈ R be given. We prove the generalized Hyers-Ulam stability of the following functional equation in Banach modules over a unital C∗-algebra: ∑n j 1 f −rjxj ∑ 1≤i≤n,i / j rixi 2 ∑n i 1 rif xi nf ∑n i 1 rixi . We show that if ∑n i 1 ri / 0, ri, rj / 0 for some 1 ≤ i < j ≤ n and a mapping f : X → Y satisfies the functional equation...

full text

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Hyers-Ulam-Rassias RNS Approximation of Euler-Lagrange-Type Additive Mappings

Recently the generalizedHyers-Ulam orHyers-Ulam-Rassias stability of the following functional equation ∑m j 1 f −rjxj ∑ 1≤i≤m,i / j rixi 2 ∑m i 1 rif xi mf ∑m i 1 rixi where r1, . . . , rm ∈ R, proved in Banach modules over a unital C∗-algebra. It was shown that if ∑m i 1 ri / 0, ri, rj / 0 for some 1 ≤ i < j ≤ m and a mapping f : X → Y satisfies the above mentioned functional equation then the...

full text

Stability Problems for Generalized Additive Mappings and Euler-lagrange Type Mappings

We introduce a generalized additivity of a mapping between Banach spaces and establish the Ulam type stability problem for a generalized additive mapping. The obtained results are somewhat different from the Ulam type stability result of Euler-Lagrange type mappings obtained by H. -M. Kim, K. -W. Jun and J. M. Rassias.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 2

pages  195- 204

publication date 2016-12-25

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023