Approximate Convexity and Submonotonicity in Locally Convex Spaces
Authors
Abstract:
This article doesn't have abstract
similar resources
Approximate convexity and submonotonicity
It is shown that a locally Lipschitz function is approximately convex if, and only if, its Clarke subdifferential is a submonotone operator. Consequently, in finite dimensions, the class of locally Lipschitz approximately convex functions coincides with the class of lower-C functions. Directional approximate convexity is introduced and shown to be a natural extension of the class of lower-C fun...
full textAsymmetric locally convex spaces
The aim of the present paper is to introduce the asymmetric locally convex spaces and to prove some basic properties. Among these I do mention the analogs of the EidelheitTuckey separation theorems, of the Alaoglu-Bourbaki theorem on the weak compactness of the polar of a neighborhood of 0, and a Krein-Milman-type theorem. These results extend those obtained by Garcı́a-Raffi et al. (2003) and Co...
full textSeminorms and Locally Convex Spaces
The first point is to describe vector spaces with topologies arising from (separating) families of semi-norms. These all turn out to be locally convex, for straightforward reasons. The second point is to check that any locally convex topological vectorspace's topology can be given by a collection of seminorms. These seminorms are made in a natural way from a local basis consisting of balanced c...
full textConvexity Conditions for Non - Locally Convex Lattices
for any x 1 ( . . . , x,, GX. A theorem of Aolci and Rolewicz (see [18]) asserts that if in (1.3) C = 2~\ then X is p-normable. We can then equivalently re-norm X so that in (1.4) JB = 1. If in addition X is a vector lattice and ||x||<||y|| whenever |x|<|y| we say that X is a quasi-Banach lattice. As in the case of Banach lattices [13] we may make the following definitions. We shall say that X ...
full textOn the dual of certain locally convex function spaces
In this paper, we first introduce some function spaces, with certain locally convex topologies, closely related to the space of real-valued continuous functions on $X$, where $X$ is a $C$-distinguished topological space. Then, we show that their dual spaces can be identified in a natural way with certain spaces of Radon measures.
full textMy Resources
Journal title
volume 36 issue No. 1
pages 69- 82
publication date 2011-01-23
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023