Approximate Analytical Solutions of Fuzzy Linear Fredholm Integral Equations by HAM

author

  • M. Ganbari 2
Abstract:

This article doesn't have abstract

Download for Free

Sign up for free to access the full text

Already have an account?login

similar resources

Approximate Solution of Linear Volterra-Fredholm Integral Equations and Systems of Volterra-Fredholm Integral Equations Using Taylor Expansion Method

In this study, a new application of Taylor expansion is considered to estimate the solution of Volterra-Fredholm integral equations (VFIEs) and systems of Volterra-Fredholm integral equations (SVFIEs). Our proposed method is based upon utilizing the nth-order Taylor polynomial of unknown function at an arbitrary point and employing integration method to convert VFIEs into a system of linear equ...

full text

Approximate Solutions of Nonlinear Volterra-Fredholm Integral Equations

Abstract: We study the numerical solvability of a class of nonlinear Volterra-Fredholm integral equations. We obtain existence and uniqueness results and analyze the linearization methods for these equations under some verifiable conditions on the kernels and nonlinear functions. Also, linearazation methods for initial value problems which have singular points are introduced. The stability esti...

full text

The approximate solutions of Fredholm integral equations on Cantor sets within local fractional operators

In this paper, we apply the local fractional Adomian decomposition and variational iteration methods to obtain the analytic approximate solutions of Fredholm integral equations of the second kind within local fractional derivative operators. The iteration procedure is based on local fractional derivative. The obtained results reveal that the proposed methods are very efficient and simple tools ...

full text

Approximate Solutions of Linear Fredholm Integral Equations System with Variable Coefficients

Abstract – In this paper, a new approximate method has been presented to solve the linear Fredholm integral equations system (FIEs). The technique is based on, first, differentiating both sides of integral equations n times and then substituting the Taylor series the unknown functions in the resulting equation and later, transforming to a matrix equation. By merging these results, a new system ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 1

pages  53- 67

publication date 2012-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023