Application of Pd-Substituted Ni-Al Layered Double Hydroxides for the Hydrogen Evolution Reaction

Authors

  • Ali Reza Madram Faculty of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology
  • Navid Zandi Atashbar Faculty of Chemistry and Chemical Engineering, Malek-Ashtar University of Technology, Tehran 15875-1774, IRAN
Abstract:

Clean production of hydrogen from electrochemical water splitting has been known as a green method of fuel production. In this work, electrocatalytic hydrogen evolution reaction (HER) was investigated at new prepared layered double hydroxides (LDH) in acidic solution. NiAl/carbon black (CB) LDH was monitored using x-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM). The substitution of nickel ions with palladium ones was recorded using Energy dispersive X–ray spectroscopy (EDX) .Moreover, the NiAl-LDH/CB and palladium substituted LDH were examined for the HER at different times of substitution. The modified NiAl-LDH/CB/Pd/GCE represented low overpotential of -0.55 V vs Ag/AgCl, Tafel slope of 125 mV/dec, charge transfer coefficient of 0.47, exchange current of 2.56 µA, as well as excellent long-term stability. Moreover, the substitution effect of palladium ions on the modification of prepared LDH GCE was satisfactorily studied for the HER in 0.5 mol L-1 H2SO4 using electrochemical impedance spectroscopy.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Biological Application of Layered Double Hydroxides in Drug Delivery Systems

This review focuses on the extensive study of different layered double hydroxides (LDHs)nanostructures and also their biological and physicochemical (in vitro) properties to encapsulateand deliver drugs with a recognized pharmacokinetic profile in a sustained/modified manner forbetter remedial efficacy contrasted to the corresponding conventional treatments using different<br ...

full text

Catalytic characterization of bi-functional catalysts derived from Pd–Mg–Al layered double hydroxides

Hydrotalcite like precursors containing Pd–Mg–Al with varying molar ratios, (Pd + Mg)/Al ≈ 3 and Mg/Pd ≈ 750 to 35, were prepared by coprecipitation of metal nitrates at constant pH. Characterization of samples as synthesized and their calcined products by elemental analyses, powder XRD, TG–DTA, FT–IR spectroscopy, TPR and N2 physisorption indicated a well crystalline hydrotalcite like structur...

full text

Exfoliation of layered double hydroxides for enhanced oxygen evolution catalysis.

The oxygen evolution reaction is a key reaction in water splitting. The common approach in the development of oxygen evolution catalysts is to search for catalytic materials with new and optimized chemical compositions and structures. Here we report an orthogonal approach to improve the activity of catalysts without alternating their compositions or structures. Specifically, liquid phase exfoli...

full text

NALAWADE et al: LAYERED DOUBLE HYDROXIDES: A REVIEW

Combination of two-dimensional layered materials and intercalation technique offers a new area for developing nanohybrids with desired functionality. Layered double hydroxides (LDHs) are mineral and synthetic materials with positively charged brucite type layers of mixed metal hydroxides. Exchangeable anions located in interlayer spaces compensate for positive charge of brucite type layer. Sinc...

full text

Adsorptive desulfurization of oil derivatives using nanostructured Mg-Al layered double hydroxides: Experimental design and modeling

This study focuses on the application of nanostructured Mg-Al layered double hydroxide as a promising adsorbent in desulfurization of dibenzothiophene, an aromatic sulfur bearing compound from gasoil model. The Mg-Al LDH was synthesized by a co-precipitation method and characterized by FT-IR, XRD, EDX and SEM. The XRD and FT-IR approved the layered structure and crystalline form of the adsorben...

full text

The ability of layered double hydroxides for nitrate absorption and desorption in crop and fallow rotation

BACKGROUND AND OBJECTIVES: This study aims down to evaluate the ability of chloride magnesium- aluminium- layered double hydroxides (4:1) for nitrate adsorption from the soil solution in successive cropping periods. METHODS: The study was conductedunder long-term cropping periods, including first crop): bell pepper; second crop: mentheae; third crop: cher...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 2  issue 4

pages  253- 261

publication date 2015-11-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023