Application of orthogonal array technique and particle swarm optimization approach in surface roughness modification when face milling AISI1045 steel parts

Authors

  • Farhad Kolahan Department of Mechanical Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-111, Mashhad, Iran
  • Masoud Azadi Moghaddam Department of Mechanical Engineering, Ferdowsi University of Mashhad, P.O. Box 91775-111, Mashhad, Iran
Abstract:

Face milling is an important and common machining operation because of its versatility and capability to produce various surfaces. Face milling is a machining process of removing material by the relative motion between a work piece and rotating cutter with multiple cutting edges. It is an interrupted cutting operation in which the teeth of the milling cutter enter and exit the work piece during each revolution. This paper is concerned with the experimental and numerical study of face milling of AISI1045. The proposed approach is based on statistical analysis on the experimental data gathered using Taguchi design matrix. Surface roughness is the most important performance characteristics of the face milling process. In this study the effect of input face milling process parameters on surface roughness of AISI1045 steel milled parts have been studied. The input parameters are cutting speed (v), feed rate (f z ) and depth of cut (a p < /em> ). The experimental data are gathered using Taguchi L9 design matrix. In order to establish the relations between the input and the output parameters, various regression functions have been fitted on the data based on output characteristics. The significance of the process parameters on the quality characteristics of the process was also evaluated quantitatively using the analysis of variance method. Then, statistical analysis and validation experiments have been carried out to compare and select the best and most fitted models. In the last section of this research, mathematical model has been developed for surface roughness prediction using particle swarm optimization (PSO) on the basis of experimental results. The model developed for optimization has been validated by confirmation experiments. It has been found that the predicted roughness using PSO is in good agreement with the actual surface roughness.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Orthogonal Particle Swarm Optimization

The Orthogonal arrays are helpful in guiding the heuristic algorithms to obtain a good solution when applied to NP-hard problems. This chapter deals with a new variant of PSO named Orthogonal PSO (OPSO) for solving the multiprocessor scheduling problem. The objective of applying the orthogonal concept in the basic PSO algorithm is to enhance the performance when applied to the scheduling proble...

full text

Optimization of End Milling Process Parameters for Minimization of Surface Roughness of AISI D2 Steel

The present work analyses different parameters of end milling to minimize the surface roughness for AISI D2 steel. D2 Steel is generally used for stamping or forming dies, punches, forming rolls, knives, slitters, shear blades, tools, scrap choppers, tyre shredders etc. Surface roughness is one of the main indices that determines the quality of machined products and is influenced by various cut...

full text

Numerical Modeling and Multi Objective Optimization of Face Milling of AISI 304 Steel

There is a requirement to find accurate parameters to accomplish precise dimensional accuracy, excellent surface integrity and maximum MRR. This work studies the influence of various cutting parameters on output parameters like Cutting force, Surface roughness, Flatness, and Material removal rate while face milling. A detailed finite element model was developed to simulate the face milling proc...

full text

Particle Swarm Optimization Application in Optimization

The Particle Swarm Optimization (PSO) was used to select the three best inputs to explain the input-output relationship of both 'defects' and 'time' models. A ranking-based system was used to select the best features. Using this system, the value of each particle in the swarm represents the importance of each feature. During optimization, the three best-ranked features were used to train the Mu...

full text

An Application of Computational Intelligence Technique for Predicting Surface Roughness in End Milling of Inconel-718

In this paper, an attempt has been made to design an computational intelligence technique based expert system using Adaptive Neuro-Fuzzy Inference System (ANFIS) for predicting surface roughness in end milling of Inconel 718. Two different types of membership functions are adopted for analysis in ANFIS training and compared their differences regarding the accuracy rate of the surface roughness ...

full text

Response Ant Colony Optimization of End Milling Surface Roughness

Metal cutting processes are important due to increased consumer demands for quality metal cutting related products (more precise tolerances and better product surface roughness) that has driven the metal cutting industry to continuously improve quality control of metal cutting processes. This paper presents optimum surface roughness by using milling mould aluminium alloys (AA6061-T6) with Respo...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 12  issue 2

pages  -

publication date 2016-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023