Application of n-distance balanced graphs in distributing management and finding optimal logistical hubs

Authors

  • Hassan Kharazi School of Mathematics‎, ‎Iran University of Science and Technology, Narmak‎, ‎Tehran‎, ‎Iran
  • Mehdi Alaeiyan School of Mathematics , Iran University of Science and Technology, Tehran , Iran
Abstract:

Optimization and reduction of costs in management of distribution and transportation of commodity are one of the main goals of many organizations. Using suitable models in supply chain in order to increase efficiency and appropriate location for support centers in logistical networks is highly important for planners and managers. Graph modeling can be used to analyze these problems and many others such as the management of municipal services and traffic control. To achieve these goals, we suggest some models based on structure of distance balanced graphs, and 15n"> -distance balanced graphs. These graphs can be considered as a model in communication networks in order to avoid additional costs and maintain balance in networks.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Remarks on Distance-Balanced Graphs

Distance-balanced graphs are introduced as graphs in which every edge uv has the following property: the number of vertices closer to u than to v is equal to the number of vertices closer to v than to u. Basic properties of these graphs are obtained. In this paper, we study the conditions under which some graph operations produce a distance-balanced graph.

full text

n-EDGE-DISTANCE-BALANCED GRAPHS

Throughout this paper, we present a new class of graphs so-called n-edgedistance-balanced graphs inspired by the concept of edge-distance-balanced property initially introduced by Tavakoli et al. [Tavakoli M., Yousefi-Azari H., Ashrafi A.R., Note on edge distance-balanced graphs, Trans. Combin. 1 (1) (2012), 1-6]. Moreover, we propose some characteristic results to recognize 2-edge-distance-bal...

full text

Distance-Balanced Closure of Some Graphs

In this paper we prove that any distance-balanced graph $G$ with $Delta(G)geq |V(G)|-3$ is regular. Also we define notion of distance-balanced closure of a graph and we find distance-balanced closures of trees $T$ with $Delta(T)geq |V(T)|-3$.

full text

remarks on distance-balanced graphs

distance-balanced graphs are introduced as graphs in which every edge uv has the followingproperty: the number of vertices closer to u than to v is equal to the number of vertices closerto v than to u. basic properties of these graphs are obtained. in this paper, we study theconditions under which some graph operations produce a distance-balanced graph.

full text

Distance-balanced graphs

Distance-balanced graphs are introduced as graphs in which every edge uv has the following property: the number of vertices closer to u than to v is equal to the number of vertices closer to v than to u. Basic properties of these graphs are obtained. The new concept is connected with symmetry conditions in graphs and local operations on graphs are studied with respect to it. Distance-balanced C...

full text

On distance-balanced graphs

It is shown that the graphs for which the Szeged index equals ‖G‖·|G| 2 4 are precisely connected, bipartite, distance-balanced graphs. This enables to disprove a conjecture proposed in [Some new results on distance-based graph invariants, European J. Combin. 30 (2009) 1149–1163]. Infinite families of counterexamples are based on the Handa graph, the Folkman graph, and the Cartesian product of ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 4

pages  783- 793

publication date 2016-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023