Application of fractional-order Bernoulli functions for solving fractional Riccati differential equation
Authors
Abstract:
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration is derived and is utilized to reduce the under study problem to a system of algebraic equations. Error analysis included the residual error estimation and the upper bound of the absolute errors are introduced for this method. The technique and the error analysis are applied to some problems to demonstrate the validity and applicability of our method.
similar resources
An exponential spline for solving the fractional riccati differential equation
In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...
full textHe’s Variational Iteration Method for Solving Fractional Riccati Differential Equation
We will consider He’s variational iteration method for solving fractional Riccati differential equation. This method is based on the use of Lagrange multipliers for identification of optimal value of a parameter in a functional. This technique provides a sequence of functions which converges to the exact solution of the problem. The present method performs extremely well in terms of efficiency ...
full textHYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...
full textFractional Riccati Equation Rational Expansion Method For Fractional Differential Equations
In this paper, a new fractional Riccati equation rational expansion method is proposed to establish new exact solutions for fractional differential equations. For illustrating the validity of this method, we apply it to the nonlinear fractional Sharma-TassoOlever (STO) equation, the nonlinear time fractional biological population model and the nonlinear fractional foam drainage equation. Compar...
full textFractional-order Riccati differential equation: Analytical approximation and numerical results
*Correspondence: [email protected] 1Department of Mathematical Sciences, University of Karachi, Karachi, 75270, Pakistan Full list of author information is available at the end of the article Abstract The aim of this article is to introduce the Laplace-Adomian-Padé method (LAPM) to the Riccati differential equation of fractional order. This method presents accurate and reliable results and has ...
full textThe spectral iterative method for Solving Fractional-Order Logistic Equation
In this paper, a new spectral-iterative method is employed to give approximate solutions of fractional logistic differential equation. This approach is based on combination of two different methods, i.e. the iterative method cite{35} and the spectral method. The method reduces the differential equation to systems of linear algebraic equations and then the resulting systems are solved by a numer...
full textMy Resources
Journal title
volume 8 issue 2
pages 277- 292
publication date 2017-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023