Application of Daubechies wavelets for solving Kuramoto-Sivashinsky‎ type equations

Authors

  • A. Davari Department of Mathematics, University of Isfahan, Isfahan, Iran.
  • M. Torabi Department of Mathematics, University of Isfahan, Isfahan, Iran.
Abstract:

We show how Daubechies wavelets are used to solve Kuramoto-Sivashinsky type equations with periodic boundary condition‎. ‎Wavelet bases are used for numerical solution of the Kuramoto-Sivashinsky type equations by Galerkin method‎. ‎The numerical results in comparison with the exact solution prove the efficiency and accuracy of our method‎.    

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

application of daubechies wavelets for solving kuramoto-sivashinsky‎ type equations

we show how daubechies wavelets are used to solve kuramoto-sivashinsky type equations with periodic boundary condition‎. ‎wavelet bases are used for numerical solution of the kuramoto-sivashinsky type equations by galerkin method‎. ‎the numerical results in comparison with the exact solution prove the efficiency and accuracy of our method‎.

full text

Backward Difference Formulae for Kuramoto–sivashinsky Type Equations∗

We analyze the discretization of the periodic initial value problem for Kuramoto–Sivashinsky type equations with Burgers nonlinearity by implicit– explicit backward difference formula (BDF) methods, establish stability and derive optimal order error estimates. We also study discretization in space by spectral methods.

full text

Optimal Parameter-dependent Bounds for Kuramoto-sivashinsky-type Equations

We derive a priori estimates on the absorbing ball in L2 for the stabilized and destabilized Kuramoto-Sivashinsky (KS) equations, and for a sixth-order analog, the Nikolaevskiy equation, and in each case obtain bounds whose parameter dependence is demonstrably optimal. This is done by extending a Lyapunov function construction developed by Bronski and Gambill (Nonlinearity 19, 2023–2039 (2006))...

full text

Legendre Wavelets for Solving Fractional Differential Equations

In this paper, we develop a framework to obtain approximate numerical solutions to ordi‌nary differential equations (ODEs) involving fractional order derivatives using Legendre wavelets approximations. The continues Legendre wavelets constructed on [0, 1] are uti‌lized as a basis in collocation method. Illustrative examples are included to demonstrate the validity and applicability of the techn...

full text

Rigorous Numerics for Partial Differential Equations: The Kuramoto-Sivashinsky Equation

We present a new topological method for the study of the dynamics of dissipative PDE’s. The method is based on the concept of the selfconsistent apriori bounds, which allows to justify rigorously the Galerkin projection. As a result we obtain a low-dimensional system of ODE’s subject to rigorously controlled small perturbation from the neglected modes. To this ODE’s we apply the Conley index to...

full text

Application of He's homotopy perturbation method for solving Sivashinsky equation

In this paper, the solution of the evolutionaryfourth-order in space, Sivashinsky equation is obtained by meansof homotopy perturbation method (textbf{HPM}). The results revealthat the method is very effective, convenient  and quite accurateto systems of nonlinear partial differential equations.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  57- 66

publication date 2014-06-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023