Anomaly Detection Using SVM as Classifier and Decision Tree for Optimizing Feature Vectors
Authors
Abstract:
Abstract- With the advancement and development of computer network technologies, the way for intruders has become smoother; therefore, to detect threats and attacks, the importance of intrusion detection systems (IDS) as one of the key elements of security is increasing. One of the challenges of intrusion detection systems is managing of the large amount of network traffic features. Removing unnecessary features is a solution to this problem. Using machine learning methods is one of the best ways to design an intrusion detection system. Focusing on this issue, in this paper, we propose a hybrid intrusion detection system using the decision tree and support vector machine (SVM) approaches. In our method, the feature selection is initially done by the C5.0 decision tree pruning, and then the features with the least predictor importance value are removed. After removing each feature, the least square support vector machine (LS-SVM) is applied. The set of features having the highest surface area under the Receiver Operating Characteristic (ROC) curve for LS-SVM are considered as final features. The experimental results on two KDD Cup 99 and UNSW-NB15 data sets show that the proposed approach improves true positive and false positive criteria and accuracy compared to the best prior work.
similar resources
SVM Classifier Incorporating Feature Selection Using GA for Spam Detection
The use of SVM (Support Vector Machines) in detecting e-mail as spam or nonspam by incorporating feature selection using GA (Genetic Algorithm) is investigated. An GA approach is adopted to select features that are most favorable to SVM classifier, which is named as GA-SVM. Scaling factor is exploited to measure the relevant coefficients of feature to the classification task and is estimated by...
full textAnomaly Detection using Feature Selection and SVM Kernel Trick
Analysis of system security becomes a major task for researchers. Intrusion detection plays a vital role in the security domain in these days, Internet usage has been increased enormously and with this, the threat to system resources has also increased. Anomaly based intrusion changes its behaviour dynamically, to detect these types of intrusions need to adopt the novel approaches are required....
full textAnomaly Detection using Decision Tree based Classifiers
as we know that with the help of Data mining techniques we can find out knowledge in terms of various characteristics and patterns. In this regard this paper presents finding out of anomalies/ outliers using various decision tree based classifiers viz. Best-first Decision Tree, Functional Tree, Logistic Model Tree, J48 and Random Forest decision tree. Three real world datasets has been used in ...
full textFault Detection and Location in DC Microgrids by Recurrent Neural Networks and Decision Tree Classifier
Microgrids have played an important role in distribution networks during recent years. DC microgrids are very popular among researchers because of their benefits. Protection is one of the significant challenges in the way of microgrids progress. As a result, in this paper, a fault detection and location scheme for DC microgrids is proposed. Due to advances in Artificial Intelligence (AI) and s...
full textView Classification of Medical X-ray Images Using Pnn Classifier, Decision Tree Algorithm and Svm Classifier
In this era of electronic advancements in the field of medical image processing, the quantum of medical X-ray images so produced exorbitantly can be effectively addressed by means of automated indexing, comparing, analysing and annotating that will really be pivotal to the radiologists in interpreting and diagnosing the diseases. In order to envisage such an objective, it has been humbly endeav...
full textFeature Selection for SVM-Based Vascular Anomaly Detection
This work explores feature selection to improve the performance in the vascular anomaly detection domain. Starting from a previously defined classification framework based on Support Vector Machines (SVM), we attempt to determine features that improve classification performance and to define guidelines for feature selection. Three different strategies were used in the feature selection stage, w...
full textMy Resources
Journal title
volume 11 issue 2
pages 159- 171
publication date 2019-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023