Analytical Solution of Steady State Substrate Concentration of an Immobilized Enzyme Kinetics by Laplace Transform Homotopy Perturbation Method
author
Abstract:
The nonlinear dynamical system modeling the immobilized enzyme kinetics with Michaelis-Menten mechanism for an irreversible reaction without external mass transfer resistance is considered. Laplace transform homotopy perturbation method is used to obtain the approximate solution of the governing nonlinear differential equation, which consists in determining the series solution convergent to the exact solution or enabling to built the approximate solution of the problem. Numerical solutions are obtained and the results are discussed graphically. The method allows to determine the solution in form of the continuous function, which is significant for the analysis of the steady state dimensionless substrate concentration with dimensionless distance on the different support materials.
similar resources
Nonlinearities distribution Laplace transform-homotopy perturbation method
This article proposes non-linearities distribution Laplace transform-homotopy perturbation method (NDLT-HPM) to find approximate solutions for linear and nonlinear differential equations with finite boundary conditions. We will see that the method is particularly relevant in case of equations with nonhomogeneous non-polynomial terms. Comparing figures between approximate and exact solutions we ...
full textA handy approximate solution for a squeezing flow between two infinite plates by using of Laplace transform-homotopy perturbation method
This article proposes Laplace Transform Homotopy Perturbation Method (LT-HPM) to find an approximate solution for the problem of an axisymmetric Newtonian fluid squeezed between two large parallel plates. After comparing figures between approximate and exact solutions, we will see that the proposed solutions besides of handy, are highly accurate and therefore LT-HPM is extremely efficient.
full textSolving The Optimal Control Problems Using Homotopy Perturbation Transform Method
Inthispaper,wesolveHamilton-Jocobi-Bellman(HJB)equationsarisinginoptimalcontrolproblems usingHomotopyPerturbationTransformMethod(HPTM).Theproposedmethodisacombinedform oftheLaplaceTransformationMethodwiththeHomotopyPerturbationMethodtoproduceahighly effectivemethodtohandlemanyproblems. ApplyingtheHPTM,solutionprocedurebecomeseasier, simplerandmorestraightforward. Someillustrativeexamplesaregive...
full textNumerical solution of seven-order Sawada-Kotara equations by homotopy perturbation method
In this paper, an application of homotopy perturbation method is appliedto nding the solutions of the seven-order Sawada-Kotera (sSK) and a Lax'sseven-order KdV (LsKdV) equations. Then obtain the exact solitary-wave so-lutions and numerical solutions of the sSK and LsKdV equations for the initialconditions. The numerical solutions are compared with the known analyticalsolutions. Their remarkabl...
full textsolution of security constrained unit commitment problem by a new multi-objective optimization method
چکیده-پخش بار بهینه به عنوان یکی از ابزار زیر بنایی برای تحلیل سیستم های قدرت پیچیده ،برای مدت طولانی مورد بررسی قرار گرفته است.پخش بار بهینه توابع هدف یک سیستم قدرت از جمله تابع هزینه سوخت ،آلودگی ،تلفات را بهینه می کند،و هم زمان قیود سیستم قدرت را نیز برآورده می کند.در کلی ترین حالتopf یک مساله بهینه سازی غیر خطی ،غیر محدب،مقیاس بزرگ،و ایستا می باشد که می تواند شامل متغیرهای کنترلی پیوسته و گ...
Numerical Solution of the Controlled Harmonic Oscillator by Homotopy Perturbation Method
The controlled harmonic oscillator with retarded damping, is an important class of optimal control problems which has an important role in oscillating phenomena in nonlinear engineering systems. In this paper, to solve this problem, we presented an analytical method. This approach is based on the homotopy perturbation method. The solution procedure becomes easier, simpler and mor...
full textMy Resources
Journal title
volume 8 issue 3 (SUMMER)
pages 145- 152
publication date 2018-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023