Analytical Dynamic Modelling of Heel-off and Toe-off Motions for a 2D Humanoid Robot

Authors

  • Aghil Yousefikoma Center of Advanced Systems and Technologies (CAST), School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran
  • Faezeh Iranmanesh Center of Advanced Systems and Technologies (CAST), School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
  • Majid Sadedel Center of Advanced Systems and Technologies (CAST), School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Abstract:

The main objective of this article is to optimize the walking pattern of a 2D humanoid robot with heel-off and toe-off motions in order to minimize the energy consumption and maximize the stability margin. To this end, at first, a gait planning method is introduced based on the ankle and hip joint position trajectories. Then, using these trajectories and the inverse kinematics, the position trajectories of the knee joint and all joint angles are determined. Afterwards, the dynamic model of the 2D humanoid robot is derived using Lagrange and Kane methods. The dynamic model equations are obtained for different phases of motion and the unknowns, including ground reactions, and joint torques are also calculated. Next, the derived dynamic model is verified by comparing the position of the ZMP point based on the robot kinematics and the ground reactions. Then, the obtained trajectories have been optimized to determine the optimal heel-off and toe-off angles using a genetic algorithm (GA) by two different objective functions: minimum energy consumption and maximum stability margin. After optimization, a parametric analysis has been adopted to inspect the effects of heel-off and toe-off motions on the selected objective functions. Finally, it is concluded that to have more stable walking in high velocities, small angles of heel-off and toe-off motions are needed. Consequently, in low velocities, walking patterns with large angles of heel-off and toe-off motions are more stable. On the contrary, large heel-off and toe-off motions lead to less energy consumption in high velocities, while small heel-off and toe-off motions are suitable for low velocities. Another important point is that for the maximum stability optimization, compared to minimum energy consumption optimization, more heel-off and toe-off motions are needed.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

analytical dynamic modelling of heel-off and toe-off motions for a 2d humanoid robot

the main objective of this article is to optimize the walking pattern of a 2d humanoid robot with heel-off and toe-off motions in order to minimize the energy consumption and maximize the stability margin. to this end, at first, a gait planning method is introduced based on the ankle and hip joint position trajectories. then, using these trajectories and the inverse kinematics, the position tra...

full text

Human-Like Walking with Heel Off and Toe Support for Biped Robot

The under-actuated foot rotation that the heel of the stance leg lifts off the ground and the body rotates around the stance toe is an important feature in human walking. However, it is absent in the realized walking gait for the majority of biped robots because of the difficulty and complexity in the control it brings about. In this paper, a hybrid control approach aiming to integrate the main...

full text

Constrained Analytical Trajectory Filter for stabilizing humanoid robot motions

Mimicking human motion with a humanoid robot is essential for allowing humanoid robots to be used in service applications. Simply creating motions without considerations for balance and stability or directly copying motion from a human using motion capture and implementing it on a humanoid robot may not be successful because of the difference in physical properties between the human and the hum...

full text

diagnostic and developmental potentials of dynamic assessment for writing skill

این پایان نامه بدنبال بررسی کاربرد ارزیابی مستمر در یک محیط یادگیری زبان دوم از طریق طرح چهار سوال تحقیق زیر بود: (1) درک توانایی های فراگیران زمانیکه که از طریق برآورد عملکرد مستقل آنها امکان پذیر نباشد اما در طول جلسات ارزیابی مستمر مشخص شوند; (2) امکان تقویت توانایی های فراگیران از طریق ارزیابی مستمر; (3) سودمندی ارزیابی مستمر در هدایت آموزش فردی به سمتی که به منطقه ی تقریبی رشد افراد حساس ا...

15 صفحه اول

A Stochastic Off Line Planner of Optimal Dynamic Motions for Robotic Manipulators

We propose a general and simple method that handles free (or point-to-point) motion planning problem for redundant and non-redundant serial robots. The problem consists of linking two points in the operational space, under constraints on joint torques, jerks, accelerations, velocities and positions while minimizing a cost function involving significant physical parameters such as transfer time ...

full text

Kicking a Ball - Modeling Complex Dynamic Motions for Humanoid Robots

Complex motions like kicking a ball into the goal are becoming more important in RoboCup leagues such as the Standard Platform League. Thus, there is a need for motion sequences that can be parameterized and changed dynamically. This paper presents a motion engine that translates motions into joint angles by using trajectories. These motions are defined as a set of Bezier curves that can be cha...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 46  issue 2

pages  243- 256

publication date 2015-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023