Analytical and Numerical Study on the Buckling of Homogeneous Beams Coated by a Functionally Graded Porous Layer with Different Boundary Conditions
author
Abstract:
In this paper, static buckling of homogeneous beams coated by a functionally graded porous layer with different boundary conditions is investigated based on the Timoshenko beam theory. The principle of virtual work has been used to obtain the governing equations. Two different methods, namely analyticalsolution and numerical solution are used to solve the governing equations and extract the buckling force. The governing equations are coupled as a series of ordinary differential equations. In the analytical solution, these equations are first uncoupled using a series of mathematical operations, and are then solved. The obtained solution has a series of parameters and unknown constants. Using the boundary conditions at the boundaries of the beam, a homogeneous system of equations is extracted, from which the axial buckling force is obtained. In the numerical solution, the generalized differential quadrature method is used to solve the static equations. Finally, the numerical results are presented and the effects of various parameters such as thickness to beam length ratio, porous layer thickness, porosity parameter, etc. on the buckling of the beam are investigated. Comparison of the results obtained from the two analytical and numerical solution methods confirms the accuracy and validity of both methods.
similar resources
Thermal Buckling of Functionally Graded Beams
In this article, thermal stability of beams made of functionally graded material (FGM) is considered. The derivations of equations are based on the one-dimensional theory of elasticity. The material properties vary continuously through the thickness direction. Tanigawa's model for the variation of Poisson's ratio, the modulus of shear stress, and the coefcient of thermal expansion is considered...
full textEffect of Non-ideal Boundary Conditions on Buckling of Rectangular Functionally Graded Plates
We have solved the governing equations for the buckling of rectangular functionally graded plates which one of its edges has small non-zero deflection and moment. For the case that the material properties obey a power law in the thickness direction, an analytical solution is obtained using the perturbation series. The applied in-plane load is assumed to be perpendicular to the edge which has no...
full textthermal buckling of functionally graded beams
in this article, thermal stability of beams made of functionally graded material (fgm) is considered. the derivations of equations are based on the one-dimensional theory of elasticity. the material properties vary continuously through the thickness direction. tanigawa's model for the variation of poisson's ratio, the modulus of shear stress, and the coefcient of thermal expansion is...
full textBuckling Behaviors of Symmetric and Antisymmetric Functionally Graded Beams
The present study investigates buckling characteristics of both nonlinear symmetric power and sigmoid functionally graded (FG) beams. The volume fractions of metal and ceramic are assumed to be distributed through a beam thickness by the sigmoid-law distribution (S-FGM), and the symmetric power function (SP-FGM). These functions have smooth variation of properties across the boundary rather tha...
full textRelations between buckling loads of functionally graded Timoshenko and homogeneous Euler–Bernoulli beams
Analytical relations between the critical buckling load of a functionally graded material (FGM) Timoshenko beam and that of the corresponding homogeneous Euler–Bernoulli beam subjected to axial compressive load have been derived for clamped–clamped (C–C), simply supported–simply supported (S–S) and clamped–free (C–F) edges. However, no such relation is found for clamped–simply supported (C–S) b...
full textOn the buckling analysis of functionally graded sandwich beams using a unified beam theory
In this paper, a unified beam theory is developed and applied to study the buckling response of two types of functionally graded sandwich beams. In the first type (Type A), the sandwich beam has a hardcore whereas in the second type (Type B), the sandwich beam has a softcore. In both the type of beams, face sheets are made up of functionally graded material. The material properties of face shee...
full textMy Resources
Journal title
volume 41 issue 1
pages 59- 75
publication date 2022-09
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023