Analytic solutions for the Stephen's inverse problem with local boundary conditions including Elliptic and hyperbolic equations

Authors

Abstract:

In this paper, two inverse problems of Stephen kind with local (Dirichlet) boundary conditions are investigated. In the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. For the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and boundary conditions of main problem, analytic solution of unknown function of main inverse problem is calculated.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

analytic solutions for the stephen's inverse problem with local boundary conditions including elliptic and hyperbolic equations

in this paper, two inverse problems of stephen kind with local (dirichlet) boundary conditions are investigated. in the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. for the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...

full text

analytic solutions for the stephen's inverse problem with local boundary conditions including elliptic and hyperbolic equations

in this paper, two inverse problems of stephen kind with local (dirichlet) boundary conditions are investigated. in the first problem only a part of boundary is unknown and in the second problem, the whole of boundary is unknown. for the both of problems, at first, analytic expressions for unknown boundary are presented, then by using these analytic expressions for unknown boundaries and bounda...

full text

The Study ‎of ‎S‎ome Boundary Value Problems Including Fractional ‎Partial ‎Differential‎ Equations with non-Local Boundary Conditions

In this paper, we consider some boundary value problems (BVP) for fractional order partial differential equations ‎(FPDE)‎ with non-local boundary conditions. The solutions of these problems are presented as series solutions analytically via modified Mittag-Leffler functions. These functions have been modified by authors such that their derivatives are invariant with respect to fractional deriv...

full text

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

An analytic solution for a non-local initial-boundary value problem including a partial differential equation with variable coefficients

‎This paper considers a non-local initial-boundary value problem containing a first order partial differential equation with variable coefficients‎. ‎At first‎, ‎the non-self-adjoint spectral problem is derived‎. ‎Then its adjoint problem is calculated‎. ‎After that‎, ‎for the adjoint problem the associated eigenvalues and the subsequent eigenfunctions are determined‎. ‎Finally the convergence ...

full text

An Inverse Boundary-value Problem for Semilinear Elliptic Equations

We show that in dimension two or greater, a certain equivalence class of the scalar coefficient a(x, u) of the semilinear elliptic equation ∆u + a(x, u) = 0 is uniquely determined by the Dirichlet to Neumann map of the equation on a bounded domain with smooth boundary. We also show that the coefficient a(x, u) can be determined by the Dirichlet to Neumann map under some additional hypotheses.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 39  issue 5

pages  855- 864

publication date 2013-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023