Analysis of Radiation Heat Transfer of a Micropolar Fluid with Variable Properties over a Stretching Sheet in the Presence of Magnetic Field

Authors

  • Cyrus Aghanajafi Faculty of Mechanical Engineering, K. N. Toosi University of Technology,Tehran, Iran
  • Reza Keimanesh M.Sc. of Mechanical Engineering, K. N. Toosi University of Technology,Tehran, Iran
Abstract:

The present study deals with the analysis of the effects of radiative heat transfer of micropolar fluid flow over a porous and stretching sheet in the presence of magnetic field. The dynamic viscosity and thermal conductivity coefficient have formulated by temperature-dependent relations to obtain more exact results. The flow is supposed two-dimensional, incompressible, steady and laminar and the applied magnetic field is assumed uniform. On the other hand, the velocity of the isothermal stretching sheet varies linearly with the distance from a fixed point on the sheet. The governing equations have extracted using the theory of micropolar fluid and the boundary layer approximation. Then they have been solved by similarity solution relationships, shooting method and fourth-order Runge-Kutta method. The results express that the presence and increase of variable thermal conductivity parameter, magnetism, radiation and variable viscosity parameter cause to decrease of heat transfer from the sheet, while increase of material parameter, Prandtl number and suction parameter increase the rate of heat transfer from the sheet. Also the values of dimensionless velocity are enhanced by increase of variable thermal conductivity parameter, material parameter and radiation parameter. On the other hand, the values of dimensionless angular velocity are completely influenced by the values of the velocity gradient.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

analysis of radiation heat transfer of a micropolar fluid with variable properties over a stretching sheet in the presence of magnetic field

the present study deals with the analysis of the effects of radiative heat transfer of micropolar fluid flow over a porous and stretching sheet in the presence of magnetic field. the dynamic viscosity and thermal conductivity coefficient have formulated by temperature-dependent relations to obtain more exact results. the flow is supposed two-dimensional, incompressible, steady and laminar and t...

full text

a swot analysis of the english program of a bilingual school in iran

با توجه به جایگاه زبان انگلیسی به عنوان زبانی بین المللی و با در نظر گرفتن این واقعیت که دولت ها و مسئولان آموزش و پرورش در سراسر جهان در حال حاضر احساس نیاز به ایجاد موقعیتی برای کودکان جهت یاد گیری زبان انگلیسی درسنین پایین در مدارس دو زبانه می کنند، تحقیق حاضر با استفاده از مدل swot (قوت ها، ضعف ها، فرصتها و تهدیدها) سعی در ارزیابی مدرسه ای دو زبانه در ایران را دارد. جهت انجام این تحقیق در م...

15 صفحه اول

Heat Transfer in a Micropolar Fluid over a Stretching Sheet with Newtonian Heating

This article looks at the steady flow of Micropolar fluid over a stretching surface with heat transfer in the presence of Newtonian heating. The relevant partial differential equations have been reduced to ordinary differential equations. The reduced ordinary differential equation system has been numerically solved by Runge-Kutta-Fehlberg fourth-fifth order method. Influence of different involv...

full text

Possessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction

This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...

full text

MHD Boundary Layer Flow and Heat Transfer of Newtonian Nanofluids over a Stretching Sheet with Variable Velocity and Temperature Distribution

Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (UW=cXβ) and the wall temperature distribution of the form (TW=T∞+aXr ) for the steady magnetohydrodynamic (MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...

full text

MHD boundary layer flow and heat transfer of Newtonian nanofluids over a stretching sheet with variable velocity and temperature distribution

Laminar boundary layer flow and heat transfer of Newtonian nanofluid over a stretching sheet with the sheet velocity distribution of the form (Uw=CXβ) and the wall temperature distribution of the form (Tw= T∞+ axr) for the steady magnetohydrodynamic(MHD) is studied numerically. The governing momentum and energy equations are transformed to the local non-similarity equations using the appropriat...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  9- 19

publication date 2016-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023