An Operator Extension of Bohr's inequality

Authors

Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

An Operator Extension of Bohr’s Inequality

T φ(At)dμ(t) for every linear functional φ in the norm dual A of A; cf. [3, Section 4.1]. Further, a field (φt)t∈T of positive linear mappings φ : A → B between C -algebras of operators is called continuous if the function t 7→ φt(A) is continuous for every A ∈ A. If the C-algebras include the identity operators, denoted by the same I, and the field t 7→ φt(I) is integrable with integral I, we ...

full text

An Operator Extension of C̆ebys̆ev Inequality

Some operator inequalities for synchronous functions that are related to the c̆ebys̆ev inequality are given. Among other inequalities for synchronous functions it is shown that ‖φ (f (A) g (A))− φ (f (A))φ (g (A))‖ ≤ max {∥∥φ (f2 (A))− φ (f (A))∥∥ , ∥∥φ (g2 (A))− φ (g (A))∥∥} whereA is a self-adjoint and compact operator on B (H ), f, g ∈ C (sp (A)) continuous and non-negative functions and φ : B...

full text

An Operator Inequality Related to Jensen’s Inequality

For bounded non-negative operators A and B, Furuta showed 0 ≤ A ≤ B implies A r 2BA r 2 ≤ (A r 2BA r 2 ) s+r t+r (0 ≤ r, 0 ≤ s ≤ t). We will extend this as follows: 0 ≤ A ≤ B ! λ C (0 < λ < 1) implies A r 2 (λB + (1− λ)C)A r 2 ≤ {A r 2 (λB + (1 − λ)C)A r 2 } s+r t+r , where B ! λ C is a harmonic mean of B and C. The idea of the proof comes from Jensen’s inequality for an operator convex functio...

full text

Extension of Jensen’s Inequality for Operators without Operator Convexity

and Applied Analysis 3 If one of the following conditions ii ψ ◦ φ−1 is concave and ψ−1 is operator monotone, ii′ ψ ◦ φ−1 is convex and −ψ−1 is operator monotone, is satisfied, then the reverse inequality is valid in 1.7 . In this paper we study an extension of Jensen’s inequality given in Theorem A. As an application of this result, we give an extension of Theorem B for a version of the quasia...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 35  issue No. 2

pages  77- 84

publication date 2011-01-16

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023