An LTB-entrapped protein in PLGA nanoparticles preserves against enterotoxin of enterotoxigenic Escherichia coli
Authors
Abstract:
Objective(s): Enterotoxigenic Escherichia coli (ETEC) is known as the most common bacterial causes of diarrheal diseases related to morbidity and mortality. Heat-labile enterotoxin (LT) is a part of major virulence factors in ETEC pathogenesis. Antigen entrapment into nanoparticles (NPs) can protect them and enhance their immunogenicity.Materials and Methods: In the present study, recombinant LTB protein was expressed in E. coli BL21 (DE3) and purified by an Ni-NTA agarose column. The protein was entrapped in PLGA polymer by the double emulsion method. NPs were characterized physicochemically and the protein release from the NPs was evaluated. ELISA assay was performed for investigation of raised antibody against the recombinant protein in mice. The anti-toxicity and anti-adherence attributes of the immune sera against ETEC were also evaluated.Results: It showed the successful cloning of a 313 bp DNA fragment encoding LTB protein in the pET28a vector. Over-expression in BL21 (DE3) led to the formation of corresponding 15.5 kDa protein bands in the SDS-PAGE gel. Western blotting by using anti-CTX confirmed the purified LTB. Protein-entrapped NPs had a spherical shape with the size of 238 nm mean diameter and 85% entrapment efficiency. Immunological analyses showed the production of a high titer of specific IgG antibody in immunized animals. The neutralizing antibody in the sera of immunized animals was approved by GM1 binding and Ileal loop assays.Conclusion: The results indicate the efficacy of the entrapped LTB protein as an effective immunogen which induces the humoral responses.
similar resources
Enterotoxigenic Escherichia coli--an overview.
Enterotoxigenic Escherichia coli is an important cause of traveler's diarrhea and diarrheal illnesses in children in the developing world. In this presentation we will focus on the main virulence attributes of this pathogenic category of E. coli, and discuss the evolution of studies conducted in our laboratory.
full textImmunogenicity of enterotoxigenic Escherichia coli outer membrane vesicles encapsulated in chitosan nanoparticles
Objective(s): Enterotoxigenic Escherichia coli (ETEC) is an important cause of diarrheal disease in humans, particularly in children under 5 years and travelers in developing countries. To our knowledge, no vaccine is licensed yet to protect against ETEC infection. Like many Gram-negative pathogens, ETEC can secrete outer membrane vesicles (OMVs). These structures contain various immunogenic vi...
full textPurification of heat-labile enterotoxin from an enterotoxin from an enterotoxigenic Escherichia coli of human origin by monoclonal immunoaffinity chromatography.
Heat-labile enterotoxin (LT) was purified from an enterotoxigenic Escherichia coli 015H11 of human origin. The purification steps included French pressure cell disruption of the bacteria, salting-out, DEAE-Sephacel on chromatography. Application of this procedure resulted in a 95.1-fold purification of LT with a yield of 19.9% as determined by rabbit ileal loop assay. The final LT preparation s...
full textImmunogenic Evaluation of Bivalent Vaccine Candidate against Enterohemorrhagic and Enterotoxigenic Escherichia coli
Background: Caused by bacterial, viral, and parasitic pathogens, diarrhea is the second leading cause of death among children under five. Two strains of E. coli, namely Enterotoxigenic, ETEC and Enterohemorrhagic EHEC are the most important causes of this disease in developing countries. EHEC is a major causative agent of bloody diarrhea and hemorrhag...
full textIdentification of a protein secretory pathway for the secretion of heat-labile enterotoxin by an enterotoxigenic strain of Escherichia coli.
Enterotoxigenic Escherichia coli (ETEC) is an enteric pathogen that causes cholera-like diarrhea in humans and animals. ETEC secretes a heat-labile enterotoxin (LT), which resembles cholera toxin, but the actual mechanism of LT secretion is presently unknown. We have identified a previously unrecognized type II protein secretion pathway in the prototypic human ETEC strain, H10407 (serotype O78:...
full textImmunogenicity of a Fusion Protein Comprising Coli Surface Antigen 3 and Labile B Subunit of Enterotoxigenic Escherichia coli
Background: Enterotoxigenic Escherichia coli (ETEC) strains are the major causes of diarrheal disease in humans and animals. Colonization factors and enterotoxins are the major virulence factors in ETEC pathogenesis. For the broad-spectrum protection against ETEC, one could focus on colonization factors and non-toxic heat labile as a vaccine candidate. Methods: A fusion protein is composed of a...
full textMy Resources
Journal title
volume 21 issue 5
pages 517- 524
publication date 2018-05-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023